Motion of Electrons in Adiabatically Perturbed Periodic Structures

  • Gianluca Panati
  • Herbert Spohn
  • Stefan Teufel


We study the motion of electrons in a periodic background potential (usually resulting from a crystalline solid). For small velocities one would use either the non-magnetic or the magnetic Bloch hamiltonian, while in the relativistic regime one would use the Dirac equation with a periodic potential. The dynamics, with the background potential included, is perturbed either through slowly varying external electromagnetic potentials or through a slow deformation of the crystal. In either case we discuss how the Hilbert space of states decouples into almost invariant subspaces and explain the effective dynamics within such a subspace.


Invariant Subspace Geometric Phase Bloch Function Chern Number Periodicity Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AM76]
    N.W. Ashcroft and N.D. Mermin. Solid State Physics. Saunders, New York, 1976.Google Scholar
  2. [AJ05]
    A. Avila and S. Jitomirskaya. Solving the Ten Martini Problem. Lecture Notes in Physics 690, pages 5–16, 2006.Google Scholar
  3. [ABL97]
    J.E. Avron, J. Berger, and Y. Last. Piezoelectricity: quantized charge transport driven by adiabatic deformations. Phys. Rev. Lett., 78, 511–514, 1997.CrossRefGoogle Scholar
  4. [BK06]
    S. Bauer and M. Kunze. Radiative friction for particles interacting with the radiation field: classical many-particle systems. In “Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke (edr), Springer-Verlag, 2006.”.Google Scholar
  5. [Bel86]
    J. Bellissard. K-theory of Cālgebras in solid-state physics. Lecture Notes in Physics, volume 257, pages 99–156, 1986.zbMATHMathSciNetGoogle Scholar
  6. [BS82]
    J. Bellissard and B. Simon. Cantor spectrum for the almost Mathieu equation. J. Funct. Anal., 48, 408–423, 1982.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [BT05]
    V. Betz and S. Teufel. Precise coupling terms in adiabatic quantum evolution: the generic case. Comm. Math. Phys., 260, 481–509, 2005.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [BM*03]
    A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger. The Geometric Phase in Quantum Systems. Springer-Verlag, Berlin, 2003.zbMATHGoogle Scholar
  9. [DGR02]
    M. Dimassi, J.C. Guillot, and J. Ralston. Semiclassical asymptotics in magnetic Bloch bands. J. Phys. A, 35, 7597–7605, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [DGR04]
    M. Dimassi, J.-C. Guillot, and J. Ralston. On Effective hamiltonians for adiabatic perturbations of magnetic Schrödinger operators. Asymptotic Analysis, 40, 137–146, 2004.zbMATHMathSciNetGoogle Scholar
  11. [DN80]
    B.A. Dubrovin and S.P. Novikov. Ground state of a two-dimensional electron in a peridodic magnetic field. Zh. Eksp. Teo. Fiz, 79, 1006–1016, translated in Sov. Phys. JETP, 52 vol. 3, 511–516, 1980.Google Scholar
  12. [FP06]
    F. Faure and G. Panati. Peierls substitution, Hofdstadter butterfly and deformations of bundles. In preparation.Google Scholar
  13. [HS89]
    B. Helffer and J. Sjöstrand. Analyse semi-classique pour l’équation de Harper I–III. Mem. Soc. Math. France (N.S), 34, tome 116, 1989, and 39, tome 117, 1990, and 40, tome 118, 1990.Google Scholar
  14. [HS89]
    B. Helffer and J. Sjöstrand. Equation de Schrödinger avec champ magnétique et équation de Harper. Schrödinger Operators, Lecture Notes in Physics, volume 345, pages 118–197, 1989.zbMATHCrossRefGoogle Scholar
  15. [Hof76]
    D.R. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14, 2239–2249, 1976.CrossRefGoogle Scholar
  16. [Kat50]
    T. Kato. On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap., 5, 435–439, 1950.CrossRefGoogle Scholar
  17. [KSV93]
    R.D. King-Smith and D. Vanderbilt. Theory of polarization in crystalline solids. Phys. Rev. B, 47, 1651–1654, 1993.CrossRefGoogle Scholar
  18. [LT05]
    C. Lasser and S. Teufel. Propagation through conical crossings: an asymptotic semigroup. Comm. Pure Appl. Math., 58, 1188–1230, 2005.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [Lei05]
    M. Lein. A dynamical approach to piezoelectricity. Diplomarbeit, Physik Department, TU München, 2005.Google Scholar
  20. [LP06]
    M. Lein and G. Panati. Piezoelectricity: beyond the fixed lattice approximation, in preparation.Google Scholar
  21. [Lys85]
    A.S. Lyskova. Topological characteristic of the spectrum of the Schrödinger operator in a magnetic field and in a weak potential. Theor. Math. Phys., 65, 1218–1225, 1985.MathSciNetCrossRefGoogle Scholar
  22. [Mau03]
    U. Mauthner. Ph.D. thesis, TU München. In preparation.Google Scholar
  23. [Nen83]
    G. Nenciu. Existence of the exponentially localised Wannier function. Comm. Math. Phys., 91, 81–85, 1983.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [Nen91]
    G. Nenciu. Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonian. Rev. Mod. Phys., 63, 91–127, 1991.CrossRefGoogle Scholar
  25. [Nen93]
    G. Nenciu. Linear adiabatic theory. Exponential estimates. Comm. Math. Phys. 152, 479–496, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [Nov81]
    S.P. Novikov. Magnetic Bloch functions and vector bundles. Typical dispersion law and quantum numbers. Sov. Math. Dokl., 23, ??, 1981.Google Scholar
  27. [Pan06]
    G. Panati. Triviality of Bloch and Bloch-Dirac bundles. arXiv:mathph/0601034, 2006.Google Scholar
  28. [PST03a]
    G. Panati, H. Spohn, and S. Teufel. Space-adiabatic perturbation theory. Adv. Theor. Math. Phys., 7, 145–204, 2003.MathSciNetGoogle Scholar
  29. [PST03b]
    G. Panati, H. Spohn, and S. Teufel. Effective dynamics for Bloch electrons: Peierls substitution and beyond. Comm. Math. Phys., 242, 547–578, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  30. [PST06]
    G. Panati, C. Sparber, and S. Teufel. A simple semiclassical description of piezoelectricity. In preparation.Google Scholar
  31. [Pui04]
    J. Puig. Cantor spectrum for the almost Mathieu operator. Comm. Math. Phys., 244, 297–309, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  32. [Res94]
    R. Resta. Macroscopic polarization in crystalline dielectrics, the geometric phase approach. Rev. Mod. Physics, 66, 899–915, 1994.CrossRefGoogle Scholar
  33. [SN99]
    G. Sundaram and Q. Niu. Wave-packet dynamics in slowly perturbed crystals, gradient corrections and Berry-phase effects. Phys. Rev. B, 59, 14195–14925, 1999.CrossRefGoogle Scholar
  34. [Teu02]
    S. Teufel. Effective N-body dynamics for the massless Nelson model and adiabatic decoupling without spectral gap. Ann. Henri Poincaré, 3, 939–965, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  35. [Teu03]
    S. Teufel. Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics Vol. 1821, Springer-Verlag, Berlin, 2003.zbMATHGoogle Scholar
  36. [Tha94]
    B. Thaller. The Dirac Equation. Springer-Verlag, Heidelberg, 1992.zbMATHGoogle Scholar
  37. [Ynd96]
    F.J. Yndurain. Relativistic Quantum Mechanics and Introduction to Field Theory. Springer-Verlag, Berlin, 1996.zbMATHGoogle Scholar
  38. [Zak64]
    J. Zak. Magnetic translation group. Phys. Rev. A, 134, 1602–1606, 1964.zbMATHMathSciNetCrossRefGoogle Scholar
  39. [Zak68]
    J. Zak. Dynamics of electrons in solid in external fields. Phys. Rev., 168, 686–695, 1968.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gianluca Panati
    • 1
  • Herbert Spohn
    • 1
  • Stefan Teufel
    • 2
  1. 1.Zentrum MathematikTU MünchenGarching
  2. 2.Mathematisches InstitutUniversität TübingenTübingen

Personalised recommendations