Skip to main content

Motion of Electrons in Adiabatically Perturbed Periodic Structures

  • Conference paper
Analysis, Modeling and Simulation of Multiscale Problems

Summary

We study the motion of electrons in a periodic background potential (usually resulting from a crystalline solid). For small velocities one would use either the non-magnetic or the magnetic Bloch hamiltonian, while in the relativistic regime one would use the Dirac equation with a periodic potential. The dynamics, with the background potential included, is perturbed either through slowly varying external electromagnetic potentials or through a slow deformation of the crystal. In either case we discuss how the Hilbert space of states decouples into almost invariant subspaces and explain the effective dynamics within such a subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.W. Ashcroft and N.D. Mermin. Solid State Physics. Saunders, New York, 1976.

    Google Scholar 

  2. A. Avila and S. Jitomirskaya. Solving the Ten Martini Problem. Lecture Notes in Physics 690, pages 5–16, 2006.

    Google Scholar 

  3. J.E. Avron, J. Berger, and Y. Last. Piezoelectricity: quantized charge transport driven by adiabatic deformations. Phys. Rev. Lett., 78, 511–514, 1997.

    Article  Google Scholar 

  4. S. Bauer and M. Kunze. Radiative friction for particles interacting with the radiation field: classical many-particle systems. In “Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke (edr), Springer-Verlag, 2006.”.

    Google Scholar 

  5. J. Bellissard. K-theory of Cālgebras in solid-state physics. Lecture Notes in Physics, volume 257, pages 99–156, 1986.

    MATH  MathSciNet  Google Scholar 

  6. J. Bellissard and B. Simon. Cantor spectrum for the almost Mathieu equation. J. Funct. Anal., 48, 408–423, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Betz and S. Teufel. Precise coupling terms in adiabatic quantum evolution: the generic case. Comm. Math. Phys., 260, 481–509, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J. Zwanziger. The Geometric Phase in Quantum Systems. Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  9. M. Dimassi, J.C. Guillot, and J. Ralston. Semiclassical asymptotics in magnetic Bloch bands. J. Phys. A, 35, 7597–7605, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Dimassi, J.-C. Guillot, and J. Ralston. On Effective hamiltonians for adiabatic perturbations of magnetic Schrödinger operators. Asymptotic Analysis, 40, 137–146, 2004.

    MATH  MathSciNet  Google Scholar 

  11. B.A. Dubrovin and S.P. Novikov. Ground state of a two-dimensional electron in a peridodic magnetic field. Zh. Eksp. Teo. Fiz, 79, 1006–1016, translated in Sov. Phys. JETP, 52 vol. 3, 511–516, 1980.

    Google Scholar 

  12. F. Faure and G. Panati. Peierls substitution, Hofdstadter butterfly and deformations of bundles. In preparation.

    Google Scholar 

  13. B. Helffer and J. Sjöstrand. Analyse semi-classique pour l’équation de Harper I–III. Mem. Soc. Math. France (N.S), 34, tome 116, 1989, and 39, tome 117, 1990, and 40, tome 118, 1990.

    Google Scholar 

  14. B. Helffer and J. Sjöstrand. Equation de Schrödinger avec champ magnétique et équation de Harper. Schrödinger Operators, Lecture Notes in Physics, volume 345, pages 118–197, 1989.

    Article  MATH  Google Scholar 

  15. D.R. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14, 2239–2249, 1976.

    Article  Google Scholar 

  16. T. Kato. On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap., 5, 435–439, 1950.

    Article  Google Scholar 

  17. R.D. King-Smith and D. Vanderbilt. Theory of polarization in crystalline solids. Phys. Rev. B, 47, 1651–1654, 1993.

    Article  Google Scholar 

  18. C. Lasser and S. Teufel. Propagation through conical crossings: an asymptotic semigroup. Comm. Pure Appl. Math., 58, 1188–1230, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Lein. A dynamical approach to piezoelectricity. Diplomarbeit, Physik Department, TU München, 2005.

    Google Scholar 

  20. M. Lein and G. Panati. Piezoelectricity: beyond the fixed lattice approximation, in preparation.

    Google Scholar 

  21. A.S. Lyskova. Topological characteristic of the spectrum of the Schrödinger operator in a magnetic field and in a weak potential. Theor. Math. Phys., 65, 1218–1225, 1985.

    Article  MathSciNet  Google Scholar 

  22. U. Mauthner. Ph.D. thesis, TU München. In preparation.

    Google Scholar 

  23. G. Nenciu. Existence of the exponentially localised Wannier function. Comm. Math. Phys., 91, 81–85, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Nenciu. Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonian. Rev. Mod. Phys., 63, 91–127, 1991.

    Article  Google Scholar 

  25. G. Nenciu. Linear adiabatic theory. Exponential estimates. Comm. Math. Phys. 152, 479–496, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  26. S.P. Novikov. Magnetic Bloch functions and vector bundles. Typical dispersion law and quantum numbers. Sov. Math. Dokl., 23, ??, 1981.

    Google Scholar 

  27. G. Panati. Triviality of Bloch and Bloch-Dirac bundles. arXiv:mathph/0601034, 2006.

    Google Scholar 

  28. G. Panati, H. Spohn, and S. Teufel. Space-adiabatic perturbation theory. Adv. Theor. Math. Phys., 7, 145–204, 2003.

    MathSciNet  Google Scholar 

  29. G. Panati, H. Spohn, and S. Teufel. Effective dynamics for Bloch electrons: Peierls substitution and beyond. Comm. Math. Phys., 242, 547–578, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Panati, C. Sparber, and S. Teufel. A simple semiclassical description of piezoelectricity. In preparation.

    Google Scholar 

  31. J. Puig. Cantor spectrum for the almost Mathieu operator. Comm. Math. Phys., 244, 297–309, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Resta. Macroscopic polarization in crystalline dielectrics, the geometric phase approach. Rev. Mod. Physics, 66, 899–915, 1994.

    Article  Google Scholar 

  33. G. Sundaram and Q. Niu. Wave-packet dynamics in slowly perturbed crystals, gradient corrections and Berry-phase effects. Phys. Rev. B, 59, 14195–14925, 1999.

    Article  Google Scholar 

  34. S. Teufel. Effective N-body dynamics for the massless Nelson model and adiabatic decoupling without spectral gap. Ann. Henri Poincaré, 3, 939–965, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Teufel. Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics Vol. 1821, Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  36. B. Thaller. The Dirac Equation. Springer-Verlag, Heidelberg, 1992.

    MATH  Google Scholar 

  37. F.J. Yndurain. Relativistic Quantum Mechanics and Introduction to Field Theory. Springer-Verlag, Berlin, 1996.

    MATH  Google Scholar 

  38. J. Zak. Magnetic translation group. Phys. Rev. A, 134, 1602–1606, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  39. J. Zak. Dynamics of electrons in solid in external fields. Phys. Rev., 168, 686–695, 1968.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panati, G., Spohn, H., Teufel, S. (2006). Motion of Electrons in Adiabatically Perturbed Periodic Structures. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35657-6_22

Download citation

Publish with us

Policies and ethics