G. Benettin, L. Galgani & A. Giorgilli, Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I, Comm. Math. Phys. 113 (1987) 87–103.
MATH
MathSciNet
CrossRef
Google Scholar
M. Born, V. Fock, Beweis des Adiabatensatzes, Zs. Physik 51 (1928) 165–180.
MATH
CrossRef
Google Scholar
F. Bornemann, Homogenization in Time of Singularly Perturbed Mechanical Systems, Springer LNM 1687 (1998).
Google Scholar
F. A. Bornemann, P. Nettesheim, B. Schmidt, & C. Schütte, An explicit and symplectic integrator for quantum-classical molecular dynamics, Chem. Phys. Lett., 256 (1996) 581–588.
CrossRef
Google Scholar
F. A. Bornemann, C. Schütte, On the singular limit of the quantum-classical molecular dynamics model, SIAM J. Appl. Math., 59 (1999) 1208–1224.
MATH
MathSciNet
CrossRef
Google Scholar
D. Cohen, Analysis and numerical treatment of highly oscillatory differential equations, Doctoral Thesis, Univ. de Genève (2004).
Google Scholar
D. Cohen, Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems, IMA J. Numer. Anal. 26 (2006) 34–59.
MATH
MathSciNet
CrossRef
Google Scholar
D. Cohen, E. Hairer & C. Lubich, Modulated Fourier expansions of highly oscillatory differential equations, Found. Comput. Math. 3 (2003) 327–345.
MATH
MathSciNet
CrossRef
Google Scholar
D. Cohen, E. Hairer & C. Lubich, Numerical energy conservation for multifrequency oscillatory differential equations, BIT 45 (2005) 287–305.
MATH
MathSciNet
CrossRef
Google Scholar
I. Degani & J. Schiff, RCMS: Right correction Magnus series approach for integration of linear ordinary differential equations with highly oscillatory solution, Report, Weizmann Inst. Science, Rehovot, 2003.
Google Scholar
P. Deuflhard, A study of extrapolation methods based on multistep schemes without parasitic solutions, Z. angew. Math. Phys. 30 (1979) 177–189.
MATH
MathSciNet
CrossRef
Google Scholar
W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations, Comm. Math. Sci. 1 (2003) 423–436.
MATH
MathSciNet
Google Scholar
B. Engquist & Y. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations, Math. Comp. 74 (2005) 1707–1742.
MATH
MathSciNet
CrossRef
Google Scholar
E. Faou & C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics, Report, 2004. To appear in Comp. Vis. Sci.
Google Scholar
B. García-Archilla, J. Sanz-Serna, R. Skeel, Long-time-step methods for oscillatory differential equations, SIAM J. Sci. Comput. 20 (1999) 930–963.
MATH
MathSciNet
CrossRef
Google Scholar
W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961) 381–397.
MATH
MathSciNet
CrossRef
Google Scholar
V. Grimm, On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations, Numer. Math. 100 (2005) 71–89.
MATH
MathSciNet
CrossRef
Google Scholar
V. Grimm, A note on the Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 102 (2005) 61–66.
MATH
MathSciNet
CrossRef
Google Scholar
V. Grimm & M. Hochbruck, Error analysis of exponential integrators for oscillatory second-order differential equations, J. Phys. A 39 (2006)
Google Scholar
H. Grubmüller, H. Heller, A. Windemuth & K. Schulten, Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions, Mol. Sim. 6 (1991) 121–142.
Google Scholar
E. Hairer, C. Lubich, Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Num. Anal. 38 (2000) 414–441.
MATH
MathSciNet
CrossRef
Google Scholar
E. Hairer, C. Lubich & G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics 31. 2nd ed., 2006.
Google Scholar
E. Hairer, C. Lubich & G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica (2003) 399–450.
Google Scholar
J. Henrard, The adiabatic invariant in classical mechanics, Dynamics reported, New series. Vol. 2, Springer, Berlin (1993) 117–235.
Google Scholar
J. Hersch, Contributionà la méthode aux différences, Z. angew. Math. Phys. 9a (1958) 129–180.
MATH
MathSciNet
CrossRef
Google Scholar
M. Hochbruck & C. Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 83 (1999) 403–426.
MATH
MathSciNet
CrossRef
Google Scholar
M. Hochbruck & C. Lubich, A bunch of time integrators for quantum/ classical molecular dynamics, in P. Deuflhard et al. (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin 1999, 421–432.
Google Scholar
M. Hochbruck & C. Lubich, Exponential integrators for quantum-classical molecular dynamics, BIT 39 (1999) 620–645.
MATH
MathSciNet
CrossRef
Google Scholar
M. Hochbruck & C. Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 41 (2003) 945–963.
MATH
MathSciNet
CrossRef
Google Scholar
A. Iserles, On the global error of discretization methods for highly-oscillatory ordinary differential equations, BIT 42 (2002) 561–599.
MATH
MathSciNet
CrossRef
Google Scholar
A. Iserles, On the method of Neumann series for highly oscillatory equations, BIT 44 (2004) 473–488.
MATH
MathSciNet
CrossRef
Google Scholar
T. Jahnke, Numerische Verfahren für fast adiabatische Quantendynamik, Doctoral Thesis, Univ. Tübingen (2003).
Google Scholar
T. Jahnke, Long-time-step integrators for almost-adiabatic quantum dynamics, SIAM J. Sci. Comput. 25 (2004) 2145–2164.
MATH
MathSciNet
CrossRef
Google Scholar
T. Jahnke & C. Lubich, Numerical integrators for quantum dynamics close to the adiabatic limit, Numer. Math. 94 (2003) 289–314.
MATH
MathSciNet
CrossRef
Google Scholar
C. Lasser & S. Teufel, Propagation through conical crossings: an asymptotic semigroup, Comm. Pure Appl. Math. 58 (2005) 1188–1230.
MATH
MathSciNet
CrossRef
Google Scholar
B. Leimkuhler & S. Reich, A reversible averaging integrator for multiple time-scale dynamics, J. Comput. Phys. 171 (2001) 95–114.
MATH
MathSciNet
CrossRef
Google Scholar
B. Leimkuhler & S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on Applied and Computational Mathematics 14, Cambridge University Press, Cambridge, 2004.
Google Scholar
K. Lorenz, Adiabatische Integratoren für hochoszillatorische mechanische Systeme, Doctoral thesis, Univ. Tübingen (2006).
Google Scholar
K. Lorenz, T. Jahnke & C. Lubich, Adiabatic integrators for highly oscillatory second order linear differential equations with time-varying eigendecomposition, BIT 45 (2005) 91–115.
MATH
MathSciNet
CrossRef
Google Scholar
P. Nettesheim, Mixed quantum-classical dynamics: a unified approach to mathematical modeling and numerical simulation, Thesis FU Berlin (2000).
Google Scholar
P. Nettesheim & S. Reich, Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics, in P. Deuflhard et al. (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin (1999) 412–420.
Google Scholar
P. Nettesheim & C. Schütte, Numerical integrators for quantum-classical molecular dynamics, in P. Deuflhard et al. (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin (1999) 412–420.
Google Scholar
L. R. Petzold, L. O. Jay & J. Yen, Numerical solution of highly oscillatory ordinary differential equations, Acta Numerica 7 (1997) 437–483.
MathSciNet
CrossRef
Google Scholar
S. Reich, Multiple time scales in classical and quantum-classical molecular dynamics, J. Comput. Phys. 151 (1999) 49–73.
MATH
MathSciNet
CrossRef
Google Scholar
H. Rubin & P. Ungar, Motion under a strong constraining force, Comm. Pure Appl. Math. 10 (1957) 65–87.
MATH
MathSciNet
Google Scholar
F. Takens, Motion under the influence of a strong constraining force, Global theory of dynamical systems, Proc. Int. Conf., Evanston/Ill. 1979, Springer LNM 819 (1980) 425–445.
MATH
MathSciNet
Google Scholar
M. Tuckerman, B.J. Berne & G.J. Martyna, Reversible multiple time scale molecular dynamics, J. Chem. Phys. 97 (1992) 1990–2001.
CrossRef
Google Scholar
C. Zener, Non-adiabatic crossing of energy levels, Proc. Royal Soc. London, Ser. A 137 (1932) 696–702.
MATH
Google Scholar