Advertisement

On the Effect of Correlations, Fluctuations and Collisions in Ostwald Ripening

  • Barbara Niethammer
  • Felix Otto
  • Juan J. L. Velázquez

Keywords

Screening Length Small Volume Fraction Screen Length Supercritical Regime Ostwald Ripening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABC94]
    N. Alikakos, P. Bates, and X. Chen. Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Rat. Mech. Anal., 128, 165–205, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [AF99]
    N. Alikakos and G. Fusco. The equations of Ostwald ripening for dilute systems. J. Stat. Phys., 95,5/6, 851–866, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [AF03]
    N. Alikakos and G. Fusco. Ostwald ripening for dilute systems under quasistationary dynamics. Comm. Math. Phys., 238,3, 429–479, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [AP81]
    A. I. Akhiezer and S. V. Peletminski. Methods of statistical physics, volume 104 of International Series in Natural Philosophy. Pergamon Press, Oxford, 1981. With a foreword by N. N. Bogoliubov [N. N. Bogolyubov], Translated from the Russian by M. Schukin.Google Scholar
  5. [AS*99]
    J. Alkemper, V. A. Snyder, N. Akaiwa, and P. W. Voorhees. Dynamics of late-stage phase separation: A test of theory. Phys. Rev. Let., 82, 2725–2729, 1999.CrossRefGoogle Scholar
  6. [AV94]
    N. Akaiwa and P. W. Voorhees. Late-stage phase separations: Dynamics, spatial correlations and structure functions. Phys. Rev.E, 49, 3860–3880, 1994.CrossRefGoogle Scholar
  7. [Bro89]
    L. C. Brown. A new examination of classical Coarsening Theory. Acta Metall., 37, 71–77, 1989.CrossRefGoogle Scholar
  8. [Bro90a]
    L. C. Brown. Reply to comments by Hillert... Scripta Metall., 24, 963–966, 1990.CrossRefGoogle Scholar
  9. [Bro90b]
    L. C. Brown. Reply to comments by Hoyt... Scripta Metall., 24, 2231–2234, 1990.CrossRefGoogle Scholar
  10. [BW79]
    A. D. Brailsford and P. Wynblatt. The dependence of Ostwald ripening kinetics on particle volume fraction. Acta met., 27, 489–497, 1979.CrossRefGoogle Scholar
  11. [Car06]
    J. Carr. Stability of solutions in a simplified LSW model. 2006. preprint.Google Scholar
  12. [CG00]
    J.-F. Collet and T. Goudon. On solutions to the Lifshitz-Slyozov model. Nonlinearity, 13, 1239–1262, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [CG04]
    J. Carrillo and T. Goudon. A numerical study on large-time asymptotics of the Lifshitz-Slyozov system. J. Sc. Comp., 201, 69–113, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [CH*06]
    S. Conti, A. Hönig, B. Niethammer, and F. Otto. Non-universality in low volume fraction Ostwald Ripening. 2006. Preprint.Google Scholar
  15. [CM97]
    D. Cioranescu and F. Murat. A strange term coming from nowhere. In A. Cherkaev and R. Kohn, editors, Topics in the Mathematical Modelling of Composite Materials, pages 45–94. Birkhäuser, 1997.Google Scholar
  16. [CNO06]
    S. Conti, B. Niethammer, and F. Otto. Coarsening rates in off-critical mixtures. SIAM J. Math. Anal., 37,6, 1732–1741, 2006.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [CP98]
    J. Carr and O. Penrose. Asymptotic behaviour in a simplified Lifshitz-Slyozov equation. Physica D, 124, 166–176, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [FGM96]
    V. E. Fradkov, M. E. Glicksman, and S. P. Marsh. Coarsening kinetics in finite clusters. Phys. Rev. E, 53, 3925–3932, 1996.CrossRefGoogle Scholar
  19. [FPL99]
    P. Fratzl, O. Penrose, and J. Lebowitz. Modeling of phase separation in alloys with coherent elastic misfit. J. Statist. Phys., 95(5–6), 1429–1503, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [FSF03]
    F. D. Fischer, J. Svoboda, and P. Fratzl. A thermodynamic approach to grain growth and coarsening. Phil. Mag., 83,9, 1075–1093, 2003.CrossRefGoogle Scholar
  21. [GMS98]
    B. Giron, B. Meerson, and P. V. Sasorov. Weak selection and stability of localized distributions in Ostwald ripening. Phys. Rev. E, 58, 4213–6, 1998.CrossRefGoogle Scholar
  22. [GN02]
    A. Garroni and B. Niethammer. Correctors and error-estimates in the homogenization of a Mullins-Sekerka problem. IHP Analyse nonlinéaire, 194, 371–393, 2002.zbMATHMathSciNetGoogle Scholar
  23. [HHR92]
    M. Hillert, O. Hunderi, and N. Ryum. Instability of distribution functions in particle coarsening. Scripta metall., 26, 1933–1938, 1992.CrossRefGoogle Scholar
  24. [HH*89]
    M. Hillert, O. Hunderi, N. Ryum, and T. Saetre. A comment on the Lifshitz-Slyozov-Wagner theory of particle coarsening. Scripta metall., 23, 1979–1982, 1989.CrossRefGoogle Scholar
  25. [HNO05a]
    A. Hönig, B. Niethammer, and F. Otto. On first-order corrections to the LSW theory I: infinite systems. J. Stat. Phys., 1191/2, 61–122, 2005.zbMATHMathSciNetCrossRefGoogle Scholar
  26. [HNO05b]
    A. Hönig, B. Niethammer, and F. Otto. On first-order corrections to the LSW theory II: finite systems. J. Stat. Phys., 1191/2, 123–164, 2005.zbMATHMathSciNetCrossRefGoogle Scholar
  27. [Hoy90]
    J. J. Hoyt. On the steady-state particle size distribution during coarsening. Scripta metall., 24, 163–166, 1990.CrossRefGoogle Scholar
  28. [HV88]
    S. Hardy and P. Voorhees. Ostwald Ripening in a System with a High Volume Fraction of Coarsening Phase. Met. Trans. A, 19 A, 2713–2721, 1988.Google Scholar
  29. [KET86]
    K. Kawasaki, Y. Enomoto, and M. Tokuhama. Elementary derivation of kinetic equation for Ostwald ripening. Physica A, 135, 426–445, 1986.CrossRefGoogle Scholar
  30. [KO02]
    R. V. Kohn and F. Otto. Upper bounds for coarsening rates. Comm. Math. Phys., 229, 375–395, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  31. [Lau01]
    P. Laurençot. Weak solutions to the Lifshitz-Slyozov-Wagner equation. Indiana Univ. Math. J., 50,3, 1319–1346, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  32. [Lau02]
    P. Laurençot. The Lifshitz-Slyozov-Wagner equation with total conserved volume. SIAM J. Math. Anal., 34,2, 257–272, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [LS61]
    I. M. Lifshitz and V. V. Slyozov. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 19, 35–50, 1961.CrossRefGoogle Scholar
  34. [Mar87]
    M. Marder. Correlations and Ostwald ripening. Phys. Rev. A, 36, 858–874, 1987.CrossRefGoogle Scholar
  35. [Mee99]
    B. Meerson. Fluctuations provide strong selection in Ostwald ripening. Phys. Rev. E, 60,3, 3072–5, 1999.CrossRefGoogle Scholar
  36. [MG*98]
    H. Mandyam, M. E. Glicksman, J. Helsing, and S. P. Marsh. Statistical simulations of diffusional coarsening in finite clusters. Phys. Rev. E, 58,2, 2119–2130, 1998.CrossRefGoogle Scholar
  37. [MR84]
    J. A. Marqusee and J. Ross. Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction. J. Chem. Phys., 80, 536–543, 1984.CrossRefGoogle Scholar
  38. [MS96]
    B. Meerson and P. V. Sasorov. Domain stability, competition, growth and selection in globally constrained bistable systems. Phys. Rev. E, 53, 3491–4, 1996.CrossRefGoogle Scholar
  39. [Nie99]
    B. Niethammer. Derivation of the LSW theory for Ostwald ripening by homogenization methods. Arch. Rat. Mech. Anal., 147,2, 119–178, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  40. [Nie00]
    B. Niethammer. The LSW-model for Ostwald Ripening with kinetic undercooling. Proc. Roy. Soc. Edinb., 130 A, 1337–1361, 2000.MathSciNetGoogle Scholar
  41. [NO01a]
    B. Niethammer and F. Otto. Domain coarsening in thin films. Comm. Pure Appl. Math., 54, 361–384, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  42. [NO01b]
    B. Niethammer and F. Otto. Ostwald Ripening: The screening length revisited. Calc. Var. and PDE, 131, 33–68, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  43. [NP99]
    B. Niethammer and R. L. Pego. Non-self-similar behavior in the LSW theory of Ostwald ripening. J. Stat. Phys., 95,5/6, 867–902, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  44. [NP00]
    B. Niethammer and R. L. Pego. On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening. SIAM J. Math. Anal., 31,3, 457–485, 2000.MathSciNetCrossRefGoogle Scholar
  45. [NP01]
    B. Niethammer and R. L. Pego. The LSW model for domain coarsening: Asymptotic behavior for total conserved mass. J. Stat. Phys., 104,5/6, 1113–1144, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  46. [NP05]
    B. Niethammer and R. L. Pego. Well-posedness for measure transport in a family of nonlocal domain coarsening models. Indiana Univ. Math. J., 54,2, 499–530, 2005.zbMATHMathSciNetCrossRefGoogle Scholar
  47. [NV04a]
    B. Niethammer and J. J. L. Velázquez. Homogenization in coarsening systems I: deterministic case. Math. Meth. Mod. Appl. Sc., 14,8, 1211–1233, 2004.zbMATHCrossRefGoogle Scholar
  48. [NV04b]
    B. Niethammer and J. J. L. Velázquez. Homogenization in coarsening systems II: stochastic case. Math. Meth. Mod. Appl. Sc., 14,9, 2004.Google Scholar
  49. [NV04c]
    B. Niethammer and J. J. L. Velázquez. Well-posedness for an inhomogeneous LSW-model in unbounded domains. Math. Annalen, 3283, 481–501, 2004.zbMATHCrossRefGoogle Scholar
  50. [NV06a]
    B. Niethammer and J. J. L. Velázquez. A model accounting for fluctuations in Ostwald Ripening. 2006. Preprint.Google Scholar
  51. [NV06b]
    B. Niethammer and J. J. L. Velázquez. Global stability and bounds for coarsening rates within the LSW mean-field theory. Comm. in PDE, 2006. to appear.Google Scholar
  52. [NV06c]
    B. Niethammer and J. J. L. Velázquez. On the convergence towards the smooth self-similar solution in the LSW model. Indiana Univ. Math. J., 55, 761–794, 2006.zbMATHMathSciNetCrossRefGoogle Scholar
  53. [NV06d]
    B. Niethammer and J. J. L. Velázquez. Screening in interacting particle systems. Arch. Rat. Mech. Anal., 1803, 493–506, 2006.zbMATHCrossRefGoogle Scholar
  54. [NV06e]
    B. Niethammer and J. J. L. Velázquez. Correlations versus particle collisions in Ostwald Ripening. In preparation.Google Scholar
  55. [Peg89]
    R. L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond. A, 422, 261–278, 1989.zbMATHMathSciNetCrossRefGoogle Scholar
  56. [TE93]
    M. Tokuhama and Y. Enomoto. Theory of phase-separation in quenched dynamic binary mixtures. Phys. Rev. E, 47,2, 1156–1179, 1993.CrossRefGoogle Scholar
  57. [TK84]
    M. Tokuhama and K. Kawasaki. Statistical-mechanical theory of coarsening of spherical droplets. Physica A, 123, 386–411, 1984.CrossRefGoogle Scholar
  58. [TKE87]
    M. Tokuhama, K. Kawasakii, and Y. Enomoto. Kinetic equation for Ostwald Ripening. Physica A, 134, 183–209, 1987.CrossRefGoogle Scholar
  59. [Vel98]
    J. J. L. Velázquez. The Becker-Döring equations and the Lifshitz-Slyozov theory of coarsening. J. Stat. Phys., 92, 195–236, 1998.zbMATHCrossRefGoogle Scholar
  60. [Vel00]
    J. J. L. Velázquez. On the effect of stochastic fluctuations in the dynamics of the Lifshitz-Slyozov-Wagner model. J. Stat. Phys., 99, 57–113, 2000.zbMATHCrossRefGoogle Scholar
  61. [Vel06a]
    J. J. L. Velázquez. On the dynamics of the characteristic curves for the LSW model. 2006. Preprint.Google Scholar
  62. [Vel06b]
    J. J. L. Velázquez. Self-similar behavior for noncompactly supported solutions of the LSW model. 2006. Preprint.Google Scholar
  63. [VG84]
    P. W. Voorhees and M. E. Glicksman. Solution to the multi-particle diffustion problem with application to Ostwald Ripening — I. Theory. Acta met., 32, 2001–2011, 1984.CrossRefGoogle Scholar
  64. [Voo85]
    P. W. Voorhees. The theory of Ostwald ripening. J. Stat. Phys., 38, 231–252, 1985.CrossRefGoogle Scholar
  65. [Voo92]
    P. W. Voorhees. Ostwald ripening of two-phase mixtures. Ann. Rev. Mater. Sc, 22, 197–215, 1992.CrossRefGoogle Scholar
  66. [Wag61]
    C. Wagner. Theorie der Alterung von Niederschlägen durch Umlösen. Z. Elektrochemie, 65, 581–594, 1961.Google Scholar
  67. [WC73]
    J. Weins and J. W. Cahn. The effect of size and distribution of second phase particles and voids on sintering. In E. G. C. Kuczynski, editor, Sintering and related phenomena, page 151. Plenum, London, 1973.Google Scholar
  68. [YE*93]
    J. H. Yao, K. R. Elder, H. Guo, and M. Grant. Theory and simulation of Ostwald ripening. Phys. Rev. B, 47, 14110–14125, 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Barbara Niethammer
    • 1
  • Felix Otto
    • 2
  • Juan J. L. Velázquez
    • 3
  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlin
  2. 2.Institut für Angewandte MathematikRheinische Friedrich-Wilhelms-Universität BonnBonn
  3. 3.Departamento de Matemática Aplicada, Facultad de MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations