Skip to main content

Electronic States in Semiconductor Nanostructures and Upscaling to Semi-Classical Models

  • Conference paper

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ahland, D. Schulz, and E. Voges. Efficient modeling of the optical properties of MQW modulators on InGaAsP with absorption edge merging. IEEE Journal of Quantum Electronics, 34, 1597–1603, 1998.

    Article  Google Scholar 

  2. T. B. Bahder. Eight-band k · p model of strained zinc-blende crystals. Physical Review B, 41(17), 11992–12001, 1990.

    Article  Google Scholar 

  3. G. Bastard. Wave Mechanics applied to Semiconductor Heterostructures. Halsted Press, 1988.

    Google Scholar 

  4. M. Bass, editor. Handbook of optics. 2. Devices, measurement, and properties. McGraw-Hill, New York, 1995.

    Google Scholar 

  5. U. Bandelow, H. Gajewski, and R. Hünlich. Fabry-Perot Lasers: Thermodynamics-Based Modeling. In J. Piprek, editor, Optoelectronic Devices. Springer, 2005.

    Google Scholar 

  6. U. Bandelow, H. Gajewski, and H.-C. Kaiser. Modeling combined effects of carrier injection, photon dynamics and heating in Strained Multi-Quantum Well Lasers. In M. O. Rolf H. Binder, Peter Blood, editor, Physics and Simulation of Optoelectronic Devices VIII, volume 3944 of Proceedings of SPIE, pages 301–310, August 2000.

    Google Scholar 

  7. U. Bandelow, R. Hünlich, and T. Koprucki. Simulation of Static and Dynamic Properties of Edge-Emitting Multiple-Quantum-Well Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 9, 798–806, 2003.

    Article  Google Scholar 

  8. U. Bandelow and T. Koprucki. WIAS-QW. Online: http://www.wias-berlin.de/software/qw.

    Google Scholar 

  9. U. Bandelow, H.-C. Kaiser, T. Koprucki, and J. Rehberg. Spectral properties of k · p Schrödinger operators in one space dimension. Numerical Functional Analysis and Optimization, 21, 379–409, 2000.

    MATH  MathSciNet  Google Scholar 

  10. U. Bandelow, H.-C. Kaiser, T. Koprucki, and J. Rehberg. Modeling and simulation of strained quantum wells in semiconductor lasers. In W. Jäger and H.-J. Krebs, editors, Mathematics-Key Technology for the Future. Joint Projects Between Universities and Industry, pages 377–390. Springer Verlag, Berlin Heidelberg, 2003.

    Google Scholar 

  11. F. Bloch. Über die Quantenmechanik der Electronen in Kristallgittern. Z. Physik, 52, 555–600, 1932.

    Article  Google Scholar 

  12. G. L. Bir and G. E. Pikus. Symmetry and Strain-Induced Effects in Semiconductors. John Wiley & Sons, New York, 1974. Übersetzung aus dem Russischen von P. Shelnitz.

    Google Scholar 

  13. M. G. Burt. The justification for applying the effective-mass approximation to microstructures. J. Physics. Condens. Matter, 4, 6651–6690, 1992.

    Article  Google Scholar 

  14. M. G. Burt. Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries. Physical Review B, 50(11), 7518–7525, 1994.

    Article  Google Scholar 

  15. M. G. Burt. Fundementals of envelope function theory for electronic states and photonic modes in nanostructures. J. Physics. Condens. Matter, 11, R53–R83, 1999.

    Article  Google Scholar 

  16. M. Cardona. Fundamentals of Semiconductors. Springer, Berlin, 1996.

    MATH  Google Scholar 

  17. M. L. Cohen and T. K. Bergstresser. Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures. Phys. Rev., 141, 789–796, 1966.

    Article  Google Scholar 

  18. J. R. Chelikowsky and M. L. Cohen. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B, 14, 556–582, 1976.

    Article  Google Scholar 

  19. C. Y.-P. Chao and S. L. Chuang. Spin-orbit-coupling effects on the valenceband structure of strained semiconductor quantum wells. Physical Review B, 46(7), 4110–4122, 1992.

    Article  Google Scholar 

  20. S. L. Chuang and C. S. Chang. k·p method for strained wurtzite semiconductors. Phys. Rev. B, 54, 2491–2504, 1996.

    Article  Google Scholar 

  21. S. L. Chuang. Physics of optoelectronic Devices. Wiley & Sons, New York, 1995.

    Google Scholar 

  22. W. W. Chow, S. W. Koch, and M. S. III. Semiconductor-Laser Physics. Springer-Verlag, Berlin, 1994.

    Google Scholar 

  23. P. Debernardi and P. Fasano. Quantum confined Stark effect in semiconductor quantum wells including valence band mixing and Coulomb effects. IEEE Journal of Quantum Electronics, 29, 2741–2755, 1993.

    Article  Google Scholar 

  24. P. Enders, A. Bärwolff, M. Woerner, and D. Suisky. k·p theory of energy bands, wave functions and optical selection rules in strained tetrahedral semiconductors. Physical Review B, 51(23), 16695–16704, 1995.

    Article  Google Scholar 

  25. P. Enders. Enhancement and spectral shift of optical gain in semiconductors from non-markovian intraband relaxation. IEEE Journal of Quantum Electronics, 33(4), 580–588, 1997.

    Article  Google Scholar 

  26. P. Enders and M. Woerner. Exact 4×4 block diagonalization of the eightband k · p Hamiltonian matrix for tetrahedral semiconductors and its application to strained quantum wells. Semicond. Sci. Technol., 11, 983–988, 1996.

    Article  Google Scholar 

  27. B. A. Foreman. Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. Physical Review B, 48(7), 4964–4967, 1993.

    Article  Google Scholar 

  28. B. A. Foreman. Elimination of spurious solutions from eight-band k · p theory. Physical Review B, 56(20), R12748–R12751, 1997.

    Article  Google Scholar 

  29. H. Gajewski. Analysis und Numerik von Ladungstransport in Halbleitern (Analysis and numerics of carrier transport in semiconductors). Mitt. Ges. Angew. Math. Mech., 16(1), 35–57, 1993.

    MathSciNet  Google Scholar 

  30. H. H. Gao, A. Krier, and V. V. Sherstnev. Appl. Phys. Lett., 77, 872, 2000.

    Article  Google Scholar 

  31. E. O. Kane. The k · p Method. In R. K. Willardson and A. C. Beer, editors, Semiconductors and Semimetals, volume 1, chapter 3, pages 75–100. Academic Press, New York and London, 1966.

    Google Scholar 

  32. E. O. Kane. Energy Band Theory. In W. Paul, editor, Handbook on Semiconductors, volume 1, chapter 4a, pages 193–217. North-Holland, Amsterdam, New York, Oxford, 1982.

    Google Scholar 

  33. T. Kato. Pertubation theory for linear operators, volume 132 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin, 1984.

    Google Scholar 

  34. T. Koprucki, M. Baro, U. Bandelow, T. Tien, F. Weik, J. Tomm, M. Grau, and M.-C. Amann. Electronic structure and optoelectronic properties of strained InAsSb/GaSb multiple quantum wells. Appl. Phys. Lett., 87, 81911/1–181911/3, 2005.

    Article  Google Scholar 

  35. M. P. C. M. Krijn. Heterojunction band offsets and effective masses in III–V quarternary alloys. Semicond. Sci. Technol., 6, 27–31, 1991.

    Article  Google Scholar 

  36. A. T. Meney, B. Gonul, and E. P. O’Reilly. Evaluation of various approximations used in the envelope-function method. Physical Review B, 50(15), 10893–10904, 1994.

    Article  Google Scholar 

  37. G. D. Sanders and K. K. Bajaj. Electronic properties and optical-absorption spectra of GaAs-AlxGa1−x As quantum wells in externally appield electric fields. Phys. Rev. B, 35, 2308–2320, 1987.

    Article  Google Scholar 

  38. J. Singh. Physics of semiconductors and their heterostructures. McGraw-Hill, New York, 1993.

    Google Scholar 

  39. X. C. Soler. Theoretical Methods for Spintronics in Semiconductors with Applications. PhD thesis, California Institute of Technology, Pasadena, California, USA, 2003.

    Google Scholar 

  40. O. Stier. Electronic and Optical Properties of Quantum Dots and Wires. Dissertation TU Berlin, Germany. Wissenschaft & Technik Verlag, Berlin, 2001.

    Google Scholar 

  41. C. G. Van de Walle. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B, 39, 1871–1883, 1989.

    Article  Google Scholar 

  42. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys., 89, 5815–5875, 2001.

    Article  Google Scholar 

  43. H. Wenzel. How to use the kp8 programs. Online: http://www.fbhberlin.de/people/wenzel/kp8.html.

    Google Scholar 

  44. A. Wilk, M. E. Gazouli, M. E. Skouri, P. Cristol, P. Grech, A. N. Baranov, and A. Joullie. Appl. Phys. Lett., 77, 2298, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koprucki, T., Kaiser, HC., Fuhrmann, J. (2006). Electronic States in Semiconductor Nanostructures and Upscaling to Semi-Classical Models. In: Mielke, A. (eds) Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35657-6_13

Download citation

Publish with us

Policies and ethics