Current Density Functional Theory

  • G. Vignale
Part of the Lecture Notes in Physics book series (LNP, volume 706)


The nonlocality of the exchange-correlation (xc) potential, i.e., the fact that the xc potential at a certain position depends on the global distribution of the particle density in space, is the curse of density functional theory. It is mainly because of this fact that, even after years of intensive studies, the exact form of the xc potential as a functional of the density remains unknown. Nevertheless, it is true that many accurate and useful results can be obtained from the use of an approximation – the local density approximation (LDA) – which ignores the problem altogether. Apparently, the nonlocal dependence of the Kohn-Sham orbitals on the density is sufficient in many cases to give the right quantum chemistry. Furthermore, a number of successful strategies have been designed to go beyond the LDA when needed: in one such approach (the generalized gradient approximation – GGA) one goes beyond the LDA by including the dependence of the xc potential on the gradient of the local density; in another one expresses the xc potential as a functional of the Kohn-Sham orbitals, and, finally, in the “meta-GGA” approach one fights the problem by including additional local variables, such as the kinetic energy density.


Local Density Approximation Force Density Dynamical Shear Modulus Electron Liquid Linear Response Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2006

Authors and Affiliations

  • G. Vignale

There are no affiliations available

Personalised recommendations