Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 704))

Abstract

This chapter describes some of the simulation methods that are used to investigate the properties of liquid crystals. Orientational elasticity, one of the characteristic features of liquid crystals, may be studied through equilibrium wave-vector-dependent fluctuations, or by directly deforming the director field via imposed boundary conditions. This leads to investigations of surface anchoring coefficients and the helical twisting power of chiral dopants. Interfacial properties such as surface tension may be studied using standard methods, but the orientational ordering of liquid crystals leads to a richer behaviour than is seen for simple fluids. Finally, simulations of macroparticles suspended in liquid crystalline solvents may provide information about the defect structure on the molecular scale, and help to make contact with larger-scale modelling methods and with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Gay and B. J. Berne (1981) Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys. 74, pp. 3316–3319

    Article  ADS  Google Scholar 

  2. E. de Miguel, L. F. Rull, M. K. Chalam, and K. E. Gubbins (1990) Liquid-vapor coexistence of the Gay-Berne fluid by Gibbs ensemble simulation. Molec. Phys. 71, pp. 1223–1231

    Article  ADS  Google Scholar 

  3. R. Berardi, A. P. J. Emerson, and C. Zannoni (1993) Monte Carlo investigations of a Gay-Berne liquid crystal. J. Chem. Soc. Faraday Trans. 89, pp. 4069–4078

    Article  Google Scholar 

  4. E. de Miguel, E. Martín del Río, J. T. Brown, and M. P. Allen (1996) Effect of the attractive interactions on the phase behavior of the Gay-Berne liquid crystal model. J. Chem. Phys. 105, pp. 4234–4249

    Article  ADS  Google Scholar 

  5. J. T. Brown, M. P. Allen, E. Martín del Río, and E. de Miguel (1998) Effects of elongation on the phase behavior of the Gay-Berne fluid. Phys. Rev. E 57, pp. 6685–6699

    Article  ADS  Google Scholar 

  6. R. Berardi, C. Fava, and C. Zannoni (1995) A generalized Gay-Berne intermolecular potential for biaxial particles. Chem. Phys. Lett. 236, pp. 462–468

    Article  ADS  Google Scholar 

  7. P. J. Camp and M. P. Allen (1997) Phase diagram of the hard biaxial ellipsoid fluid. J. Chem. Phys. 106, pp. 6681–6688

    Article  ADS  Google Scholar 

  8. P. J. Camp, M. P. Allen, and A. J. Masters (1999) Theory and computer simulation of bent-core molecules. J. Chem. Phys. 111, pp. 9871–9881

    Article  ADS  Google Scholar 

  9. J. S. van Duijneveldt and M. P. Allen (1997) Computer simulation study of a flexible-rigid-flexible model for liquid crystals. Molec. Phys. 92, pp. 855–870

    Article  ADS  Google Scholar 

  10. A. V. Lyulin, M. S. Al-Barwani, M. P. Allen, M. R. Wilson, I. Neelov, and N. K. Allsopp (1998) Molecular dynamics simulation of main chain liquid crystalline polymers. Macromolecules 31, pp. 4626–4634

    Article  ADS  Google Scholar 

  11. J. S. van Duijneveldt, A. Gilvillegas, G. Jackson, and M. P. Allen (2000) Simulation study of the phase behavior of a primitive model for thermotropic liquid crystals: Rodlike molecules with terminal dipoles and flexible tails. J. Chem. Phys. 112, pp. 9092–9104

    Article  ADS  Google Scholar 

  12. R. Berardi, S. Orlandi, and C. Zannoni (2003) Molecular dipoles and tilted smectic formation: a Monte Carlo study. Phys. Rev. E 67, p. 041708

    Article  ADS  Google Scholar 

  13. R. Berardi, M. Fehervari, and C. Zannoni (1999) A Monte Carlo simulation study of associated liquid crystals. Molec. Phys. 97, pp. 1173–1184

    Article  ADS  Google Scholar 

  14. D. L. Cheung, S. J. Clark, and M. R. Wilson (2002) Parametrization and validation of a force field for liquid-crystal forming molecules. Phys. Rev. E 65, p. 051709

    Article  ADS  Google Scholar 

  15. R. Berardi, L. Muccioli, and C. Zannoni (2004) Can nematic transitions be predicted by atomistic simulations? A computational study of the odd-even effect. Chem. Phys. Chem. 5, pp. 104–111

    Google Scholar 

  16. C. Oseen (1933) Theory of liquid crystals. Trans. Faraday Soc. 29, pp. 883–899

    Article  Google Scholar 

  17. F. C. Frank (1958) On the theory of liquid crystals. Discuss. Faraday Soc. 25, pp. 19–28

    Article  Google Scholar 

  18. L. Onsager (1949) The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51, p. 627

    Article  ADS  Google Scholar 

  19. M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith (1996) Molecular dynamics calculation of elastic constants in Gay-Berne nematic liquid crystals. J. Chem. Phys. 105, pp. 2850–2858

    Article  ADS  Google Scholar 

  20. M. P. Allen (1993) Calculating the helical twisting power of dopants in a liquid crystal by computer simulation. Phys. Rev. E 47, pp. 4611–4614

    Article  ADS  Google Scholar 

  21. M. J. Cook and M. R. Wilson (2000) Calculation of helical twisting power for liquid crystal chiral dopants. J. Chem. Phys. 112, pp. 1560–1564

    Article  ADS  Google Scholar 

  22. G. Germano, M. P. Allen, and A. J. Masters (2002) Simultaneous calculation of the helical pitch and the twist elastic constant in chiral liquid crystals from intermolecular torques. J. Chem. Phys. 116, pp. 9422–9430

    Article  ADS  Google Scholar 

  23. D. J. Earl and M. R. Wilson (2004) Calculations of helical twisting powers from intermolecular torques. J. Chem. Phys. 120, pp. 9679–9683

    Article  ADS  Google Scholar 

  24. P. G. de Gennes and J. Prost (1995) The Physics of Liquid Crystals (Oxford: Clarendon Press, second, paperback ed)

    Google Scholar 

  25. M. P. Allen (1999) Molecular simulation and theory of liquid crystal surface anchoring. Molec. Phys. 96, pp. 1391–1397

    Article  ADS  Google Scholar 

  26. D. Andrienko, G. Germano, and M. P. Allen (2000) Liquid crystal director fluctuations and surface anchoring by molecular simulation. Phys. Rev. E 62, pp. 6688–6693

    Article  ADS  Google Scholar 

  27. M. P. Allen (2000) Molecular simulation and theory of the isotropic-nematic interface. J. Chem. Phys. 112, pp. 5447–5453

    Article  ADS  Google Scholar 

  28. A. J. McDonald, M. P. Allen, and F. Schmid (2000) Surface tension of the isotropic-nematic interface. Phys. Rev. E 63, pp. 010701(R)/1–4

    Google Scholar 

  29. P. Poulin, V. Cabuil, and D. A. Weitz (1997) Direct measurement of colloidal forces in an anisotropic solvent. Phys. Rev. Lett. 79, pp. 4862–4865

    Article  ADS  Google Scholar 

  30. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz (1997) Novel colloidal interactions in anisotropic fluids. Science 275, pp. 1770–1773

    Article  Google Scholar 

  31. J. L. Billeter and R. A. Pelcovits (2000) Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion. Phys. Rev. E 62, pp. 711–717

    Article  ADS  Google Scholar 

  32. D. Andrienko, G. Germano, and M. P. Allen (2001) Computer simulation of topological defects around a colloidal particle or droplet dispersed in a nematic host. Phys. Rev. E 63, pp. 041701/1–8

    Google Scholar 

  33. M. S. Al-Barwani, G. Sutcliffe, and M. P. Allen (2004) Forces between two colloidal particles in a nematic solvent. J. Phys. Chem. B 108, pp. 6663–6666

    Article  Google Scholar 

  34. R. W. Ruhwandl and E. M. Terentjev (1997) Long-range forces and aggregation of colloidal particles in a nematic liquid crystal. Phys. Rev. E 55, pp. 2958–2961

    Article  ADS  Google Scholar 

  35. M. P. Allen (2004) Liquid crystal systems. In Computational soft matter: from synthetic polymers to proteins (N. Attig, K. Binder, H. Grubmüller, and K. Kremer, eds.) 23 of NIC Series, (Jülich), pp. 289–320, John von Neumann Institute for Computing, NIC-Directors

    Google Scholar 

  36. G. R. Luckhurst and P. Simpson (1982) Computer simulation studies of anisotropic systems. VIII. The Lebwohl-Lasher model of nematogens revisited. Molec. Phys. 47, pp. 251–265

    Article  ADS  Google Scholar 

  37. U. Fabbri and C. Zannoni (1986) A Monte-Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition. Molec. Phys. 58, pp. 763–788

    Article  ADS  Google Scholar 

  38. Z. Zhang, M. J. Zuckermann, and O. G. Mouritsen (1993) Phase transition and director fluctuations in the 3-dimensional Lebwohl-Lasher model of liquid crystals. Molec. Phys. 80, pp. 1195–1221

    Article  ADS  Google Scholar 

  39. R. Hashim and S. Romano (1999) Computer simulation study of a nematogenic lattice model based on the Nehring-Saupe interaction potential. Int. J. Mod. Phys. B 13, pp. 3879–3902

    Article  ADS  Google Scholar 

  40. C. Chiccoli, Y. Lansac, P. Pasini, J. Stelzer, and C. Zannoni (2002) Effect of surface orientation on director configurations in a nematic droplet. A Monte Carlo simulation. Mol. Cryst. Liq. Cryst. 372, pp. 157–165

    Article  Google Scholar 

  41. M. P. Allen (2005) Spin dynamics for the Lebwohl-Lasher model. Phys. Rev. E 72, p. 036703

    Article  ADS  Google Scholar 

  42. D. Svenšek and S. Žumer (2002) Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals. Phys. Rev. E 66, p. 021712

    Article  ADS  Google Scholar 

  43. R. Yamamoto, Y. Nakayama, and K. Kim (2004) A smooth interface method for simulating liquid crystal colloid dispersions. J. Phys. Cond. Mat. 16, pp. S1945–S1955

    Article  ADS  Google Scholar 

  44. C. Denniston, D. Marenduzzo, E. Orlandini, and J. M. Yeomans (2004) Lattice Boltzmann algorithm for three-dimensional liquid-crystal hydrodynamics. Phil. Trans. Roy. Soc. A 362, pp. 1745–1754

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Allen, M. (2006). Computer Simulation of Liquid Crystals. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 2. Lecture Notes in Physics, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35284-8_9

Download citation

Publish with us

Policies and ethics