Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

Abstract

We review a recent method we have developed for Fermion quantum Monte Carlo. By using combinatorial arguments to perform resummations over paths, we reformulate the stochastic problem of sampling paths in terms of sampling “graphs”, which are much better behaved with regards sign-cancellation problems encountered in path-integral simulations of Fermions. Detailed mathematical derivations of the new results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. W. Thom and A. Alavi (2005) A combinatorial approach to the electron correlation problem. J. Chem. Phys. 123, pp. 204106

    Article  ADS  Google Scholar 

  2. R. P. Feynman (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys. 20, pp. 367–387

    Article  ADS  MathSciNet  Google Scholar 

  3. R. P. Feynman, A. R. Hibbs (1965) Quantum Mechanics and Path Integrals, McGraw-Hill.

    Google Scholar 

  4. W. M. C. Foulkes, L. Mitas, R. J. Needs and G. Rajagopal (2001) Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, pp. 33–83

    Article  ADS  Google Scholar 

  5. D. M. Ceperley (1992) Path-integral calculations of normal liquid-He-3. Phys. Rev. Lett. 69, pp. 331–334

    Article  ADS  Google Scholar 

  6. For a comprehensive account of many quantum chemical methods see Modern Electronic Structure Theory by P. Jorgensen, J. Olsen and T. Helgaker (2000) Wiley, New York

    Google Scholar 

  7. J. B. Anderson (1975) Random-walk simulation of Schrodinger equation - H+3. J. Chem. Phys. 63, pp. 1499–1503; ibid. (1976) Quantum chemistry by randomwalk. 65, pp. 4121–4127

    Google Scholar 

  8. A. Luchow and J. B. Anderson (1996) First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo. J. Chem. Phys. 105, pp. 7573–7578

    Article  ADS  Google Scholar 

  9. M. E. Tuckerman and A. Hughes (1998) In “Classical and Quantum Dynamics in condensed systems”, ed. B. J. Berne, G. Ciccotti, D. F. Coker, World Scientific

    Google Scholar 

  10. D. E. Knuth (1973) In “The Art of Computer Programming, Volume 1: Fundamental Algorithms”, Addison Wesley

    Google Scholar 

  11. F. Becca, A. Parola, S. Sorella (2000) Ground-state properties of the Hubbard model by Lanczos diagonalizations. Phys. Rev. B 61, pp. R16287–R16290

    Article  ADS  Google Scholar 

  12. R. W. Hall (2002) An adaptive, kink-based approach to path integral calculations. J. Chem. Phys. 116, pp. 1–7

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Alavi, A., Thom, A. (2006). Path Resummations and the Fermion Sign Problem. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_19

Download citation

Publish with us

Policies and ethics