Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

Abstract

We review recently developed approximate methods for computing quantum time correlation functions based on linearizing the phase of their path integral expressions in the difference between paths representing the forward and backward propagators. Our focus here will be on problems that can be partitioned into two subsystems: One that is best described by a few discrete quantum states such as the high frequency vibrations or electronic states of molecules, and the other subsystem, “the bath”, composed of the remaining degrees of freedom that will be described by a continuous representation. The general theory will first be developed and applied to model condensed phase problems. Approximations to the theory will be then made enabling applications to large scale realistic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Tully (1998) Mixed quantum classical dynamics: Mean field and surface hopping. In G. Ciccotti B. Berne, and D. Coker, editors, Classical and quantum dynamics in condensed phase simulations. World Scientific, Dordrecht, p. 489

    Google Scholar 

  2. N. Yu, C. J. Margulis, and D. F. Coker (2001) Influence of solvation environment on excited state avoided crossings and photo-dissociation dynamics. J. Phys. Chem. B 105, p. 6728

    Article  Google Scholar 

  3. C. J. Margulis and D. F. Coker (1999) Nonadiabatic molecular dynamics simulations of the photofragmentation and geminate recombination dynamics in size-selected I-2 (CO2)n cluster ions. J. Chem. Phys. 110, p. 5677

    Article  ADS  Google Scholar 

  4. V. S. Batista and D. F. Coker (1997) Nonadiabatic molecular dynamics simulations of the photofragmentation and geminate recombination dynamics of I- 2 in size selected Ar n clusters. J. Chem. Phys. 106, p. 7102

    Article  ADS  Google Scholar 

  5. V. S. Batista and D. F. Coker (1997) Nonadiabatic molecular dynamics simulations of ultrafast pump-probe experiments on I2 in solid rare gases. J. Chem. Phys. 106, p. 6923

    Article  ADS  Google Scholar 

  6. V. S. Batista and D. F. Coker (1996) Nonadiabatic molecular dynamics simulation of photodissociation and geminate recombination of I2 in liquid xenon. J. Chem. Phys. 105, p. 4033

    Article  ADS  Google Scholar 

  7. P. J. Rossky (1998) Nonadiabatic quantum dynamics simulation using classical baths. In G. Ciccotti B. Berne, and D. Coker, editors, Classical and quantum dynamics in condensed phase simulations. World Scientific, Dordrecht, p. 515

    Google Scholar 

  8. P. V. Parandeker and J. C. Tully (2005) Mixed quantum-classical equilibrium. J. Chem. Phys. 122, p. 094102

    Article  ADS  Google Scholar 

  9. R. Kapral and G. Ciccotti (1999) Mixed quantum-classical dynamics. J. Chem. Phys. 110, p. 8919

    Article  ADS  Google Scholar 

  10. S. Nielsen, R. Kapral, and G. Ciccotti (2000) Mixed quantum-classical surface hopping dynamics. J. Chem. Phys. 112, p. 6543

    Article  ADS  Google Scholar 

  11. S. Nielsen, R. Kapral, and G. Ciccotti (2001) Statistical mechanics of quantum classical systems. J. Chem. Phys. 115, p. 5805

    Article  ADS  Google Scholar 

  12. A. Sergi and R. Kapral (2004) Quantum-classical limit of quantum correlation functions. J. Chem. Phys. 121, p. 7565

    Article  ADS  Google Scholar 

  13. C. C. Martens and J.-Y. Fang (1997) Semiclassical-limit molecular dynamics on multiple electronic surfaces. J. Chem. Phys. 106, p. 4918

    Article  ADS  Google Scholar 

  14. A. Donoso and C. C. Martens (2000) Semiclassical multistate Liouville dynamics in the adiabatic representation. J. Chem. Phys. 112, p. 3980

    Article  ADS  Google Scholar 

  15. C. C. Martens and A. Donoso (1997) Simulation of coherent nonadiabatic dynamics using classical trajectories. J. Phys. Chem. A 102, p. 4291

    Google Scholar 

  16. S. Bonella and D. F. Coker (2005) Land-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. J. Chem. Phys. 122, p. 194102

    Article  ADS  Google Scholar 

  17. S. Bonella, D. Montemayor, and D. F. Coker (2005) Linearized path integral approach for calculating nonadiabatic time correlation functions. Proc. Natl. Acad. Sci. 102, pp. 6715–6719

    Article  ADS  Google Scholar 

  18. J. A. Poulsen, G. Nyman, and P. J. Rossky (2003) Practical evaluation of condensed phase quantum correlation functions: A Feynman-Kleinert variational linearized path integral method. J. Chem. Phys. 119, p. 12179

    Article  ADS  Google Scholar 

  19. J. A. Poulsen, G. Nyman, and P. J. Rossky (2004) Determination of the Van Hove spectrum of liquid He(4): An application of Feynman-Kleinert linearized path integral methodology. J. Phys. Chem. A 108, p. 8743

    Article  Google Scholar 

  20. J. A. Poulsen, G. Nyman, and P. J. Rossky (2005) Static and dynamic quantum effects in molecular liquids: A linearized path integral description of water. Proc. Natl. Acad. Sci. 102, p. 6709

    Article  ADS  Google Scholar 

  21. Q. Shi and E. Geva (2003) A relationship between semiclassical and centroid correlation functions. J. Chem. Phys. 118, p. 8173

    Article  ADS  Google Scholar 

  22. Q. Shi and E. Geva (2004) A semiclassical generalized quantum master equation for an arbitrary system-bath coupling. J. Chem. Phys. 120, p. 10647

    Article  ADS  Google Scholar 

  23. Q. Shi and E. Geva (2003) Semiclassical theory of vibrational energy relaxation in the condensed phase. J. Phys. Chem. A 107, p. 9059

    Article  Google Scholar 

  24. Q. Shi and E. Geva (2003) Vibrational energy relaxation in liquid oxygen from semiclassical molecular dynamics. J. Phys. Chem. A 107, p. 9070

    Article  Google Scholar 

  25. M. F. Herman and D. F. Coker (1999) Classical mechanics and the spreading of localized wavepackets in condensed phase molecular systems. J. Chem. Phys. 111, p. 1801

    Article  ADS  Google Scholar 

  26. R. Hernandez and G. Voth (1998) Quantum time correlation functions and classical coherence. Chem. Phys. Lett. 223, p. 243

    Google Scholar 

  27. H. D. Meyer and W. H. Miller (1979) A Classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70, p. 3214

    Article  ADS  Google Scholar 

  28. W. H. Miller and C. W. McCurdy (1978) Classical trajectory model for electronically nonadiabatic collision phenomena. A classical analog for electronic degrees of freedom. J. Chem. Phys. 69, p. 5163

    Article  ADS  Google Scholar 

  29. C. W. McCurdy, H. D. Meyer, and W. H. Miller (1979) Classical model for electronic degrees of freedom in nonadiabatic collision processes: Pseudopotential analysis and calculations for F(2 P 1/2)+H+,Xe → F(2 P 3/2)+H+,Xe. J. Chem. Phys. 70, p. 3177

    Article  ADS  Google Scholar 

  30. G. Stock and M. Thoss (1997) Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78, p. 578

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. G. Stock and M. Thoss (1999) Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59, p. 64

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Ciccotti, C. Pierleoni, F. Capuani, and V. S. Filinov (1999) Wigner approach to the semiclassical dynamics of a quantum many-body system: the dynamic scattering function of 4He. Comp. Phys. Commun. 121, p. 452

    Article  ADS  Google Scholar 

  33. X. Sun and W. H. Miller (1997) Mixed semiclassical-classical approaches to the dynamics of complex molecular systems. J. Chem. Phys. 106, p. 916

    Article  ADS  Google Scholar 

  34. H. Wang, X. Sun, and W. H. Miller (1998) Semicalssical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems. J. Chem. Phys. 108, p. 9726

    Article  ADS  Google Scholar 

  35. X. Sun, H. B. Wang, and W. H. Miller (1998) On the semiclassical description of quantum coherence in thermal rate constants. J. Chem. Phys. 109, p. 4190

    Article  ADS  Google Scholar 

  36. X. Sun, H. B. Wang, and W. H. Miller (1998) Semiclassical theory of electronically nonadaibatic molecular dynamics: Results of a linearized approximation to the initial value representation. J. Chem. Phys. 109, p. 7064

    Article  ADS  Google Scholar 

  37. W. H. Miller (2001) The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105, p. 2942

    Article  Google Scholar 

  38. H. Wang, M. Thoss, and W. H. Miller (2001) Generalized forward-backward initial value representation for the calculation of correlation functions in complex systems. J. Chem. Phys. 114, p. 9220

    Article  ADS  Google Scholar 

  39. S. Zhang and E. Pollak (2003) Quantum dynamics for dissipative systems : A numerical study of the Wigner-Fokker-Planck equation. J. Chem. Phys. 118, p. 4357

    Article  ADS  Google Scholar 

  40. D. F. Coker and S. Bonella (2006) Linearized non-adiabatic dynamics in the adiabatic representation. In David Micha and Irene Burghardt, editors, Quantum dynamics of complex molecular systems. Springer-Verlag, Berlin, p. 307

    Google Scholar 

  41. H. Kleinert (2004) Path Integrals in Quantum Mechanics, Statics, Polymer Physics and Financial Markets. World Scientific, Singapore

    Google Scholar 

  42. M. F. Herman and E. Kluk (1984) A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91, p. 27

    Article  Google Scholar 

  43. W. H. Miller (2002) An alternate derivation of the herman-kluk (coherent state) semiclassical initial value representation of the time evolution operator. Mol. Phys. 100, p. 397

    Article  ADS  Google Scholar 

  44. X. Sun and W. H. Miller (1997) Semiclassical initial value representation for electronically nonadaibatic molecular dynamics. J. Chem. Phys. 106, p. 6346

    Article  ADS  Google Scholar 

  45. G. Stock and M. Thoss (2005) Classical description of nonadiabatic quantum dynamics. Adv. Chem. Phys. 131, p. 243

    Article  Google Scholar 

  46. P. Pechukas (1969) Time-dependent semiclassical scattering theory. II. Atomic collisions. Phys. Rev. 181, p. 174

    Article  ADS  Google Scholar 

  47. J. C. Tully (1990) Molecular dynamics with electronic transitions. J. Chem. Phys. 93, p. 1061

    Article  ADS  Google Scholar 

  48. S. Bonella and D. F. Coker (2003) Semi-classical implementation of the mapping Hamiltonian approach for non-adiabatic dynamics: Focused initial distribution sampling. J. Chem. Phys. 118, p. 4370

    Article  ADS  Google Scholar 

  49. O. Prezhdo B. Schwartz, E. Bittner, and P. Rossky (1996) Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J. Chem. Phys. 104, p. 5942

    Article  ADS  Google Scholar 

  50. E. Bittner and P. Rossky (1997) Decoherent histories and non adiabatic quantum molecular dinamics simulations. J. Chem. Phys. 107, p. 8611

    Article  ADS  Google Scholar 

  51. M. Ben-Nun and T. J. Martinez (1998) Nonadiabatic molecular dynamics: Validation of the multiple spawining method for a multidimensional problem. J. Chem. Phys. 108, p. 7244

    Article  ADS  Google Scholar 

  52. M. Ben-Nun and T. J. Martinez (2000) A multiple spawning approach to tunneling dynamics. J. Chem. Phys. 112, p. 6113

    Article  ADS  Google Scholar 

  53. M. Ben-Nun, J. Quenneville, and T. J. Martinez (2000) Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, p. 5161

    Article  Google Scholar 

  54. M. D. Hack, A. M. Wensmann, D. G. Truhlar, M. Ben-Nun, and T. J. Martinez (2001) Comparison of full multiple spawning, trajectory surface hopping and converged quantum mechanics for electronically nonadiabatic dynamics. J. Chem. Phys. 115, p. 1172

    Article  ADS  Google Scholar 

  55. M. Ben-Nun and T. J. Martinez (2002) Ab initio quantum molecular dynamics. Adv. Chem. Phys. 121, p. 439

    Article  Google Scholar 

  56. S. Bonella and D. F. Coker (2001) A semi-classical limit for the mapping Hamiltonian approach to electronically non-adiabatic dynamics. J. Chem. Phys. 114, p. 7778

    Article  ADS  Google Scholar 

  57. S. Bonella and D. F. Coker (2001) Semi-classical implementation of mapping Hamiltonian methods for general non-adiabatic problems. Chem. Phys. 268, p. 323

    Article  Google Scholar 

  58. S. Causo, G. Ciccotti, D. Montemayor, S. Bonella, and D.F. Coker (2005) An adiabatic linearized path integral approach for quantum time correlation functions: Electronic transport in metal-molten salt solutions. J. Phys. Chem. B 109, p. 6855

    Article  Google Scholar 

  59. C. H. Mak and D. Chandler (1991) Coherent-incoherent transition and relaxation in condensed phase tunneling systems. Phys. Rev. A 44, p. 2352

    Article  ADS  Google Scholar 

  60. M. Topaler and N. Makri (1994) Quantum rates for a double well coupled to a dissipative bath: Accurate path integral results and comparison with approximate theories. J. Chem. Phys. 101, p. 7500

    Article  ADS  Google Scholar 

  61. K. Thompson and N. Makri (1999) Influence functionals with semiclassical propagators in combined forward-backward time. J. Chem. Phys. 110, p. 1343

    Article  ADS  Google Scholar 

  62. K. Thompson and N. Makri (1998) Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 291, p. 101

    Article  Google Scholar 

  63. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger (1987) Dynamics of the dissipative two state system. Rev. Mod. Phys. 59, p. 1

    Article  ADS  Google Scholar 

  64. R. Egger and C. H. Mak (1994) Low temperature dynamical simulation of spinboson systems. Phys. Rev. B 50, p. 15210

    Article  ADS  Google Scholar 

  65. D. G. Evans, A. Nitzan, and M. A. Ratner (1998) Photoinduced electron transfer in mixed valence compounds: Beyond the golden rule regime. J. Chem. Phys. 108, p. 6387

    Article  ADS  Google Scholar 

  66. G. Stock (1995) A semiclassical self-consistent-field approach to dissipative dynamics: The spin-boson problem. J. Chem. Phys. 103, p. 1561

    Article  ADS  Google Scholar 

  67. A. Golosov and D. R. Reichman (2001) Classical mapping approaches for nonadiabatic dynamics: Short time analysis. J. Chem. Phys. 114, p. 1065

    Article  ADS  Google Scholar 

  68. D. Mac Kernan, G. Ciccotti, and R. Kapral (2002) Surface hopping dynamics of a spin boson system. J. Chem. Phys. 116, p. 2346

    Article  ADS  Google Scholar 

  69. M. A. Bredig (1964) Molten Salt Chemistry. Interscience, New York, NY

    Google Scholar 

  70. W. Freyland, K. Garbade, and E. Pfeiffer (1983) Optical study of electron localization approaching a polarization catastrophe in liquid Kx-KCl1−x. Phys. Rev. Lett. 51, p. 1304

    Article  ADS  Google Scholar 

  71. E. S. Fois, A. Selloni, and M. Parrinello (1989) Approach to metallic behavior in metal-molten-salt solutions. Phys. Rev. 39, p. 4812

    Article  ADS  Google Scholar 

  72. A. Selloni, P. Carnevali, R. Car, and M. Parrinello (1987) Localization, hopping, and diffusion of electrons in molten salts. Phys. Rev. Lett. 59, p. 823

    Article  ADS  Google Scholar 

  73. R. Resta (1988) Quantum-mechanical position operator in extended systems. Phys. Rev. Lett. 80, p. 1800

    Article  ADS  Google Scholar 

  74. S. Causo, G. Ciccotti, S. Bonella, and R. Vuillemier. (2006) An adiabatic linearized path integral approach for quantum time correlation functions II: A cumulant expansion method for improving convergence. To appear in J. Phys. Chem.B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Coker, D., Bonella, S. (2006). Linearized Path Integral Methods for Quantum Time Correlation Functions. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_16

Download citation

Publish with us

Policies and ethics