Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

Abstract

Quantum mechanics provides us with the most fundamental description of natural phenomena. In many instances classical mechanics constitutes an adequate approximation and it is widely used in simulations of both static and dynamic properties of many-body systems. Often, however, quantum effects cannot be neglected and one is faced with the task of devising methods to simulate the behavior of the quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Wigner (1932) On the Quantum Correction for Thermodynamic Equilibrium. Phys. Rev. 40, pp. 749–759

    Article  MATH  ADS  Google Scholar 

  2. K. Imre, E. Ozizmir, M. Rosenbau, and P. F. Zweifel (1967) Wigner method in quantum statistical mechanics. J. Math. Phys. 8, pp. 1097–1108; M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner (1984) Distribution functions in physics: Fundamentals. Phys. Repts. 106, pp. 121–167

    Google Scholar 

  3. R. Kubo (1957) Statistical-mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. (Japan) 12, 570–586; R. Kubo (1966) The fluctuation-dissipation theorem. Repts. Prog. Phys. 29, pp. 255–284

    Google Scholar 

  4. R. Kapral and G. Ciccotti (1999) Mixed Quantum-Classical Dynamics. J. Chem. Phys. 110, pp. 8919–8929

    Article  ADS  Google Scholar 

  5. S. Nielsen, R. Kapral, and G. Ciccotti (2001) Statistical Mechanics of Quantum- Classical Systems. J. Chem. Phys. 115, pp. 5805–5815

    Article  ADS  Google Scholar 

  6. R. Kapral and G. Ciccotti (2002) A statistical mechanical theory of quantum dynamics in classical environments. In Bridging Time Scales: Molecular Simulations for the Next Decade, ed by P. Nielaba, M. Mareschal, and G. Ciccotti, Springer Berlin Heidelberg, pp. 445–472

    Chapter  Google Scholar 

  7. P. Mazur and I. Oppenheim (1970) Molecular theory of Brownian motion. Physica 50, pp. 241–258

    Article  ADS  Google Scholar 

  8. V. I. Gerasimenko (1982) Correlation-less equations of motion of quantumclassical systems. Repts. Acad. Sci. Ukr. SSR 10, pp. 64–67; V. I. Gerasimenko (1982) Dynamical equation of quantum-classical systems. Theor. Math. Phys. 50, pp. 49–55

    Google Scholar 

  9. I. V. Aleksandrov (1981) The statistical dynamics of a system consisting of a classical and a quantum subsystem. Z. Naturforsch. 36a, pp. 902–908

    ADS  Google Scholar 

  10. W. Boucher and J. Traschen (1988) Semiclassical physics and quantum fluctuations. Phys. Rev. D 37, pp. 3522–3532

    Article  ADS  Google Scholar 

  11. W. Y. Zhang and R. Balescu (1988) Statistical-mechanics of a spin-polarized plasma. J. Plasma Phys. 40, pp. 199–213; ibid. (1988) Kinetic-equation, spin hydrodynamics and collisional depolarization rate in a spin-polarized plasma. J. Plasma Phys. 40, pp. 215–234

    Google Scholar 

  12. O. V. Prezhdo and V. V. Kisil (1997) Mixing quantum and classical mechanics. Phys. Rev. A 56, pp. 162–175

    Article  ADS  MathSciNet  Google Scholar 

  13. C. C. Martens and J.-Y. Fang (1996) Semiclassical-limit molecular dynamics on multiple electronic surfaces. J. Chem. Phys. 106, pp. 4918–4930; A. Donoso, and C. C. Martens (1998) Simulation of Coherent Nonadiabatic Dynamics Using Classical Trajectories. J. Phys. Chem. A 102, pp. 4291–4300

    Google Scholar 

  14. I. Horenko, C. Salzmann, B. Schmidt, and C. Schütte (2002) Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phasespace packets. J. Chem. Phys. 117, pp. 11075–11088

    Article  ADS  Google Scholar 

  15. Q. Shi and E. Geva (2004) A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism. J. Chem. Phys. 121, pp. 3393– 3404

    Article  ADS  Google Scholar 

  16. S. Nielsen, R. Kapral, and G. Ciccotti (2000) Statistical Mechanics of Quantum- Classical Systems. J. Chem. Phys. 112, pp. 6543–6553

    Article  ADS  Google Scholar 

  17. A. Sergi and R. Kapral (2004) Quantum-Classical Limit of Quantum Correlation Functions. J. Chem. Phys. 121, pp. 7565–7576

    Article  ADS  Google Scholar 

  18. H. Kim and R. Kapral (2005) Transport Properties of Quantum-Classical Systems. J. Chem. Phys. 122, 214105

    Article  ADS  Google Scholar 

  19. V. S. Filinov, Y. V. Medvedev, and V. L. Kamskyi (1995) Quantum dynamics and wigner representation of quantum-mechanics. Mol. Phys. 85, pp. 711–726; V. S. Filinov (1996) Wigner approach to quantum statistical mechanics and quantum generalization molecular dynamics method. Part 1. Mol. Phys. 88, pp. 1517–1528

    Google Scholar 

  20. V. S. Filinov (1996) Wigner approach to quantum statistical mechanics and quantum generalization molecular dynamics method. Part 2. Mol. Phys. 88, pp. 1529–1540

    Article  ADS  Google Scholar 

  21. C. C.Wan and J. Schofield (2000) Mixed quantum-classical molecular dynamics: Aspects of the multithreads algorithm. J. Chem. Phys. 113, pp. 7047–7054

    Google Scholar 

  22. C. C. Wan and J. Schofield (2002) Solutions of mixed quantum-classical dynamics in multiple dimensions using classical trajectories. J. Chem. Phys. 116, pp. 494–506

    Google Scholar 

  23. M. Santer, U. Manthe, and G. Stock (2001) Quantum-classical Liouville description of multidimensional nonadiabatic molecular dynamics. J. Chem. Phys. 114, pp. 2001–2012

    Article  ADS  Google Scholar 

  24. I. Horenko, M. Weiser, B. Schmidt, and C. Schütte (2004) Fully adaptive propagation of the quantum-classical Liouville equation. J. Chem. Phys. 120, pp. 8913–8923

    Article  ADS  Google Scholar 

  25. D. MacKernan, G. Ciccotti, and R. Kapral (2002) Sequential Short-Time Propagation of Quantum-Classical Dynamics. J. Phys. Condens. Matt. 14, pp. 9069–9076

    Article  ADS  Google Scholar 

  26. A. Sergi, D. Mac Kernan, G. Ciccotti, and R. Kapral (2003) Simulating quantum dynamics in classical environments. Theor. Chem. Acc. 110, pp. 49–58

    Google Scholar 

  27. G. Hanna and R. Kapral (2005) Quantum-Classical Liouville Dynamics of Nonadiabatic Proton Transfer. J. Chem. Phys. 122, 244505

    Article  ADS  Google Scholar 

  28. R. Kapral, S. Consta, L. McWhirter (1998) Chemical rate laws and rate constants. In Classical and Quantum Dynamics in Condensed Phase Simulations, ed by B. J. Berne, G. Ciccotti, D. F. Coker World Scientific, Singapore pp. 583–616

    Chapter  Google Scholar 

  29. H. Azzouz and D. Borgis (1993) A quantum molecular-dynamics study of proton-transfer reactions along asymmetrical H bonds in solution. J. Chem. Phys. 98, pp. 7361–7374

    Article  ADS  Google Scholar 

  30. S. Hammes-Schiffer and J. C. Tully (1994) Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101, pp. 4657–4667

    Google Scholar 

  31. R. P. McRae, G. K. Schenter, B. C. Garrett, Z. Svetlicic, and D. G. Truhlar (2001) Variational transition state theory evaluation of the rate constant for proton transfer in a polar solvent. J. Chem. Phys. 115, pp. 8460–8480

    Article  ADS  Google Scholar 

  32. D. Antoniou and S. D. Schwartz (1999) A molecular dynamics quantum Kramers study of proton transfer in solution. J. Chem. Phys. 110, pp. 465–472

    Article  ADS  Google Scholar 

  33. D. Antoniou and S. D. Schwartz (1999) Quantum proton transfer with spatially dependent friction: Phenol-amine in methyl chloride. J. Chem. Phys. 110, pp. 7359–7364

    Article  ADS  Google Scholar 

  34. S. Y. Kim and S. Hammes-Schiffer (2003) Molecular dynamics with quantum transitions for proton transfer: Quantum treatment of hydrogen and donoracceptor motions. J. Chem. Phys. 119, pp. 4389–4398

    Google Scholar 

  35. T. Yamamoto and W. H. Miller (2005) Path integral evaluation of the quantum instanton rate constant for proton transfer in a polar solvent. J. Chem. Phys. 122, 044106

    Article  ADS  Google Scholar 

  36. P. M. Kiefer and J. T. Hynes (2004) Adiabatic and nonadiabatic proton transfer rate constants in solution. Solid State Ionics, 168, pp. 219–224

    Article  Google Scholar 

  37. D. Laria, G. Ciccotti, and M. Ferrario et al. (1992) Molecular-Dynamics Study of Adiabatic Proton-Transfer Reactions in Solution. J. Chem. Phys. 97, pp. 378–388

    Article  ADS  Google Scholar 

  38. H. Kim and R. Kapral (2005) Nonadiabatic quantum-classical reaction rates with quantum equilibrium structure. J. Chem. Phys. 123, 194108

    Article  ADS  Google Scholar 

  39. M. Topaler and N. Makri (1994) Quantum rates for a double well coupled to a dissipative bath: Accurate path integral results and comparison with approximate theories. J. Chem. Phys. 101, pp. 7500–7519

    Article  ADS  Google Scholar 

  40. S. Bonella and D. F. Coker (2005) LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. J. Chem. Phys. 122, 194102

    Article  ADS  Google Scholar 

  41. H. Kim and P. J. Rossky (2002) Evaluation of Quantum Correlation Functions from Classical Data. J. Phys. Chem. B 106, pp. 8240–8247

    Article  Google Scholar 

  42. J. A. Poulsen, G. Nyman, and P. J. Rossky (2003) Practical evaluation of condensed phase quantum correlation functions: A FeynmanKleinert variational linearized path integral method. J. Chem. Phys. 119, pp. 12179–12193

    Article  ADS  Google Scholar 

  43. A. Sergi and R. Kapral (2003) Quantum-Classical Dynamics of Nonadiabatic Chemical Reactions. J. Chem. Phys. 118, pp. 8566–8575

    Article  ADS  Google Scholar 

  44. N. Makri and K. Thompson (1998) Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 291, pp. 101–109; ibid. (1999) Influence functionals with semiclassical propagators in combined forwardbackward time. J. Chem. Phys. 110, pp. 1343–1353; N. Makri (1999) The Linear Response Approximation and Its Lowest Order Corrections: An Influence Functional Approach. J. Phys. Chem. B 103, pp. 2823–2829

    Google Scholar 

  45. D. McKernan, R. Kapral, and G. Ciccotti (2002) Surface-Hopping Dynamics of a Spin-Boson System. J. Chem. Phys. 116, pp. 2346–2353

    Article  ADS  Google Scholar 

  46. H. B. Wang, X. Sun, and W. H. Miller (1998) Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems. J. Chem. Phys. 108, pp. 9726–9736

    Article  ADS  Google Scholar 

  47. E. Rabani, G. Krilov, and B. J. Berne (2000) Quantum mechanical canonical rate theory: A new approach based on the reactive flux and numerical analytic continuation methods. J. Chem. Phys. 112, pp. 2605–2614

    Article  ADS  Google Scholar 

  48. V. V. Kisil (2005) A quantum-classical bracket from p-mechanics. Europhys. Lett. 72, pp. 873–879

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kapral, R., Ciccotti, G. (2006). Transport Coefficients of Quantum-Classical Systems. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_15

Download citation

Publish with us

Policies and ethics