Skip to main content

Multiscale Modelling in Molecular Dynamics: Biomolecular Conformations as Metastable States

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 703))

Abstract

We report on a novel approach to the automatic identification of metastablestates from long term simulation of complex molecular systems. The new approachis based on a hierarchical concept of metastability: metastable statesare understood as subsets of state or configuration space from which the dynamicsexits only very rarely; subsets with the smallest exit probabilities areof most interest, their further decomposition then may reveal subsets fromwhich exiting is less but comparably difficult for the system under investigation.The article gives a survey of the theoretical foundation of the approachand its algorithmic realization that generalizes the well-known concept of HiddenMarkov Models. The performance of the resulting algorithm is illustratedby an application to a 100 ns simulation of penta-alanine with explicit water.We demonstrate that the resulting metastable states allow to reveal theconformation dynamics of the molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard (1999) A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. Special Issue on Computational Biophysics 151, pp. 146–168

    MATH  ADS  Google Scholar 

  2. C. Schütte and W. Huisinga (2003) Biomolecular conformations can be identified as metastable sets of molecular dynamics. In Handbook of Numerical Analysis (P. G. Ciaret and J.-L. Lions, eds.), Computational Chemistry, North-Holland

    Google Scholar 

  3. D. Chandler (1998) Finding transition pathways: Throwing ropes over rough montain passes, in the dark, in Classical and Quantum Dynamics in Condensed Phase Simulations (B. Berne, G. Ciccotti, and D. Coker, eds.), Singapure:World Scientific, pp. 51–66

    Google Scholar 

  4. W. E., W. Ren, and E. Vanden-Eijnden (2002) String method for the study of rare events. Phys. Rev. B 66, p. 052301

    Article  ADS  Google Scholar 

  5. W. E., W. Ren, and E. Vanden-Eijnden (2005) Finite temperature string method for the study of rare events. J. Phys. Chem. B 109, pp. 6688–6693

    Article  Google Scholar 

  6. A. Laio and M. Parrinello (2002) Escaping free-energy minima. Proceedings of the National Academy of the United States of America 99, pp. 12562–23566

    Google Scholar 

  7. R. Elber and M. Karplus (1987) Multiple conformational states of proteins: A molecular dynamics analysis of Myoglobin. Science 235, pp. 318–321

    Article  ADS  Google Scholar 

  8. P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte (2000) Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Lin. Alg. Appl. 315, pp. 39–59

    Article  MATH  Google Scholar 

  9. M. Dellnitz and O. Junge (1999) On the approximation of complicated dynamical behavior. SIAM J. Num. Anal. 36(2), pp. 491–515

    Article  MathSciNet  Google Scholar 

  10. P. Deuflhard and M. Weber (2005) Robust Perron cluster analysis in conformation dynamics. Lin. Alg. Appl. 398, pp. 161–184

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Horenko, E. Dittmer, A. Fischer, and C. Schütte, Automated model reduction for complex systems exhibiting metastability. Submitted to Multiscale Modeling and Simulation

    Google Scholar 

  12. I. Horenko, E. Dittmer, and C. Schütte (2005) Reduced stochastic models for complex molecular systems. Computing and Visualization in Science 9, pp. 89–102

    Article  Google Scholar 

  13. A. Fischer, S. Waldhausen, I. Horenko, E. Meerbach, and C. Schütte (2004) Identification of biomolecular conformations from incomplete torsion angle observations by hidden Markov models. Journal of computational Physics (submitted)

    Google Scholar 

  14. I. Horenko, E. Dittmer, F. Lankas, J. Maddocks, P. Metzner, and C. Schütte (2005) Macroscopic dynamics of complex metastable systems: Theory, algorithms, and application to b-dna. J. Appl. Dyn. Syst., submitted

    Google Scholar 

  15. S. D. Bond and B. B. L. Benedict J. Leimkuhler (1999) The Nosé–Poincaré method for constant temperature molecular dynamics. JCP 151(1), pp. 114– 134

    Article  MATH  ADS  Google Scholar 

  16. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein (2001) Metastability in stochastic dynamics of disordered mean–field models. Probab. Theor. Rel. Fields 119, pp. 99–161

    Article  MATH  MathSciNet  Google Scholar 

  17. E. B. Davies (1982) Metastable states of symmetric Markov semigroups I. Proc. London Math. Soc. 45(3), pp. 133–150

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Schütte, W. Huisinga, and P. Deuflhard (2001) Transfer operator approach to conformational dynamics in biomolecular systems. In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems (B. Fiedler, ed.), Springer Berlin Heidelberg, pp. 191–223

    Google Scholar 

  19. G. Singleton (1984) Asymptotically exact estimates for metatstable Markov semigroups. Quart. J. Math. Oxford 35(2), pp. 321–329

    Article  MATH  MathSciNet  Google Scholar 

  20. W. E and E. Vanden-Eijnden (2005) Metastability, conformation dynamics, and transition pathways in complex systems preprint

    Google Scholar 

  21. W. Huisinga, S. Meyn, and C. Schütte (2004) Phase transitions and metastability in Markovian and molecular systems. Ann. Appl. Probab. 14(1), pp. 419–458

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Schütte and W. Huisinga (2000) On conformational dynamics induced by Langevin processes. In EQUADIFF 99 – International Conference on differential Equations (B. Fiedler, K. Gröger, and J. Sprekels, eds.), vol. 2, (Singapore), pp. 1247–1262, World Scientific

    Google Scholar 

  23. W. Huisinga and B. Schmidt (2005) Metastability and dominant eigenvalues of transfer operators. In New Algorithms for Macromolecular Simulation (C. Chipot, R. Elber, A. Laaksonen, B. Leimkuhler, A. Mark, T. Schlick, C. Schütte, and R. Skeel, eds.), vol. 49 of Lecture Notes in Computational Science and Engineering, Springer, to appear

    Google Scholar 

  24. M.Weber (2004) Improved Perron cluster analysis. ZIB-Report, (Zuse Institute, Berlin, pp. 03–04

    Google Scholar 

  25. P. Lezaud (2001) Chernoff and Berry–Esséen inequalities for Markov processes. ESIAM: P & S 5, pp. 183–201

    Article  MATH  MathSciNet  Google Scholar 

  26. B. J. Berne and J. E. Straub (1997) Novel methods of sampling phase space in the simulation of biological systems. Curr. Opinion in Struct. Biol. 7, pp. 181– 189

    Article  Google Scholar 

  27. D. M. Ferguson, J. I. Siepmann, and D. G. Truhlar, eds. (1999) Monte Carlo Methods in Chemical Physics, vol. 105 of Advances in Chemical Physics. New York: Wiley

    Google Scholar 

  28. A. Fischer, C. Schütte, P. Deuflhard, and F. Cordes (2002) Hierarchical uncoupling-coupling of metastable conformations. In Computational Methods for Macromolecules: Challenges and Applications (T. Schlick and H. H. Gan, eds.), vol. 24 of Lecture Notes in Computational Science and Engineering, Springer Berlin Heidelberg, pp. 235–259

    Google Scholar 

  29. J. A. Bilmes (1998) A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and Hidden Markov Models. tech. rep., International Computer Science Institute, Berkeley

    Google Scholar 

  30. A. J. Viterbi (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Informat. Theory IT-13, pp. 260– 269

    Article  Google Scholar 

  31. Y. Mu, P. H. Nguyen, and G. Stock (2004) Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins: Structure, Function, and Bioinformatics 58(1), pp. 45–52

    Article  Google Scholar 

  32. G. N. Ramachandran and V. Sasiskharan (1968) Conformations of polypeptides and proteins. Advan. Prot. Chem. 23, pp. 283–427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Meerbach, E., Dittmer, E., Horenko, I., Schütte, C. (2006). Multiscale Modelling in Molecular Dynamics: Biomolecular Conformations as Metastable States. In: Ferrario, M., Ciccotti, G., Binder, K. (eds) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1. Lecture Notes in Physics, vol 703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35273-2_14

Download citation

Publish with us

Policies and ethics