Skip to main content

A Method to Simulate Fuzzy Random Variables

  • Chapter
  • 613 Accesses

Part of the book series: Advances in Soft Computing ((AINSC,volume 37))

Abstract

In this paper a method is introduced to simulate fuzzy random variables by using the support function. On the basis of the support function, the class of values of a fuzzy random variable can be ‘identified’ with a closed convex cone of a Hilbert space, and we now suggest to simulate Hilbert space-valued random elements and to project later into such a cone. To make easier the projection above we will consider isotonic regression. The procedure will be illustrated by means of several examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Cardot. Nonparametric regression for functional responses with application to conditional functional principal components analysis. Technical Report LSP- 2005–01, Universite Paul Sabatier, 2005.

    Google Scholar 

  2. A. Colubi, J. S. Domínguez-Menchero, M. López-Díaz, and R. Körner. A method to derive strong laws of large numbers for random upper semicontinuous functions. Statist. Probab. Lett., 53:269–275, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Colubi, J. S. Domínguez-Menchero, M. López-Díaz, and D. A. Ralescu. A d e [0,1]-representation of random upper semicontinuous functions. Proc. Amer. Math. Soc., 130:3237–3242, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Colubi, C. Fernández-García, M. López-Díaz, and M. A. Gil. Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data. IEEE Trans. Fuzzy Syst., 10:384–390, 2002.

    Article  Google Scholar 

  5. P. Diamond and P. Kloeden. Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore, 1994.

    MATH  Google Scholar 

  6. J.S. Domínguez-Menchero and G. González-Rodríguez. Analyzing an extension of the isotonic regression problem. 2006. (submitted).

    Google Scholar 

  7. R. Fraiman and G. Muñiz. Trimmed means for functional data. Test, 10:419–440, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.A. Gil, M. Montenegro, G. González-Rodríguez, A. Colubi, and M.R. Casals. Bootstrap approach to the multi-sample test of means with imprecise data. Comput. Statist. Data Anal., 2006. (accepted, in press).

    Google Scholar 

  9. G. González-Rodríguez, A. Colubi, and M.A. Gil. A fuzzy representation of random variables: an operational tool in exploratory analysis and hypothesis testing. Comput. Statist. Data Anal., 2006. (accepted, in press).

    Google Scholar 

  10. R. Körner and W. Näther. On the variance of random fuzzy variables. In C. Bertoluzza, M.A. Gil, and D.A. Ralescu, editors, Statistical Modeling, Analysis and Management of Fuzzy Data, pages 22–39. Physica-Verlag, Heidelberg, 2002.

    Google Scholar 

  11. M. Montenegro, A. Colubi, M. R. Casals, and M. A. Gil. Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika, 59:31–49, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. L. Puri and D. A. Ralescu. The concept of normality for fuzzy random variables. Ann. Probab., 11:1373–1379, 1985.

    MathSciNet  Google Scholar 

  13. M. L. Puri and D. A. Ralescu. Fuzzy random variables. J. Math. Anal. Appl., 114:409–422, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. O. Ramsay and B. W. Silverman. Functional data analysis. Springer Series in Statistics. Springer-Verlag, New York, 1997.

    Google Scholar 

  15. J. O. Ramsay and B. W. Silverman. Applied functional data analysis. Methods and case studies. Springer Series in Statistics. Springer-Verlag, New York, 2002.

    Google Scholar 

  16. F. Yao, H.-G. Müller, and J.-L. Wang. Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc., 100:577–590, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  17. L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning, II. Inform. Sci., 8:301–353, 1975.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

G., GR., A., C., M.A., G., R., C. (2006). A Method to Simulate Fuzzy Random Variables. In: Lawry, J., et al. Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34777-1_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-34777-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34776-7

  • Online ISBN: 978-3-540-34777-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics