Ultraintense Tabletop Laser System and Plasma Applications

  • S. Martellucci
  • M. Francucci
  • P. Ciuffa
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 84)


The advent of the ultraintense Tabletop Pulsed Laser Systems (TPLSs) has opened new and thus for unexpected frontiers allowing for the development and the progress of new research areas, in particular in scientific and industrial fields. Usually, these laser systems are used in order to generate plasma on solid or gaseous targets, so-called laser-induced plasma (LIP). The generated plasma behaves like a source of visible, UV and X radiation that can be used for many applications. In particular, X-rays emitted from LIP are used in X spectroscopy, microlithography, microscopy, imaging, radiographies (for example of biological samples). Conversion efficiency studies from laser radiation to X-rays for different targets are central for the energy balance of the source as an important performance parameter and reason of industrial attractiveness. More in generally, TPLSs are used for radiation-matter interaction studies, for fundamental plasma parameter determination, for astrophysical applications, for inertial confinement fusion, for studies in high energy physics or in the compact particle accelerator field, for quantum electrodynamics studies, defense systems, etc. TPLS design and realization are difficult tasks that require interdisciplinary cooperative efforts among researchers from different disciplines: physics, chemistry, engineering, material science, etc. This chapter describes a TPLS that is in operation at the Tor Vergata University laboratories, which is based on multistage pulsed Nd:YAG/Glass laser source (1064 nm/15 ns/10 J/TEM00 emission mode/pulse repetition rate = 1 shot per minute). Finally, some examples of the application of this TPLS are given.


Laser Intensity Laser Source Laser Shot Solid Target Satellite Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Strickland and G. Mourou, Opt. Commun. 56 (1985), 219.CrossRefADSGoogle Scholar
  2. 2.
    P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electronics 24 (1988), 398.CrossRefADSGoogle Scholar
  3. 3.
    P. Ciuffa, “Sistemi per la Generazione e Rivelazione di Raggi X da Plasma Indotto da Laser, per applicazioni di Microlitografia, Radiobiologia, Microscopia”, PhD Thesis of Microsystem Engineering, XIII Cycle, University of Rome “Tor Vergata”, Academic Year 1999–2000.Google Scholar
  4. 4.
    G. J. Tallents et al., “Film calibration for soft X-ray wavelengths”, SPIE 3157.Google Scholar
  5. 5.
    “X ray streak camera”, Kentech Instruments Ltd.Google Scholar
  6. 6.
    W. L. Kruer, “Physics of Laser Plasma Interaction”, AddisonWesley, Redwood City, CA (1988).Google Scholar
  7. 7.
    G. Mourou, J. Barty, M. D. Perry, “Physics Today” (Jan 1998).Google Scholar
  8. 8.
    I. C. E. Turcu, J. B. Dance, “X rays from laser plasma: Generation and Applications”, Wiley, London (1998).Google Scholar
  9. 9.
    E. P. Liang, S. C. Wilks, M. Tabak, Phys. Rev. Lett. 81 (1998), 4887.CrossRefADSGoogle Scholar
  10. 10.
    B. A. Remington, D. Arnett, R. P. Drake, H. Takabe, Science 284 (1998), 1488.CrossRefADSGoogle Scholar
  11. 11.
    B. A. Remington, D. Arnett, R. P. Drake, H. Takabe, Phys. Plasmas 7 (2000), 1641.CrossRefADSGoogle Scholar
  12. 12.
    J. D. Lindl, Phys. Plasmas 2 (1995), 3933.CrossRefADSGoogle Scholar
  13. 13.
    W. Hogan et al., “Energy from Inertial Fusion”, IAEA, Vienna (1994).Google Scholar
  14. 14.
    K. W. D. Ledingham, P. A. Norreys, Contemp. Phys. 40 (1999), 367.CrossRefADSGoogle Scholar
  15. 15.
    T. Tajima, J. M. Dawson, Phys. Rev. Lett. 43 (1979), 267.CrossRefADSGoogle Scholar
  16. 16.
    A. Pukhov, Z. M. Sheng, J. Meyer Ter-Vehn, Phys. Fluids 6 (1999), 2847.Google Scholar
  17. 17.
    M. Gavrila, Adv. At. Mol. Opt. Phys. Suppl. 1 (1992), 435.ADSGoogle Scholar
  18. 18.
    P. Celliers et al., Phys Rev. Lett. 84 (2000), 5564.CrossRefADSGoogle Scholar
  19. 19.
    I. Bellucci, P. Ciuffa, F. Flora, S. Martellucci, G. Petrocelli, “Spettroscopia ad alta risoluzione di un plasma di Mg”, Collana di quaderni di ottica e fotonica N. 7, Societa italiana di ottica e fotonica — 40 Anni di laser, Firenze (28 November 2000), 159–162.Google Scholar
  20. 20.
    K. B. Fournier et al., “Observations of high-n transitions in the spectra of near-neon-like copper ions from laser-produced plasmas”, J. Phys. B: At. Mol. Opt. Phys. 35 (2002), 3347–3364.CrossRefADSGoogle Scholar
  21. 21.
    I. Yu. Skobelev et al., “Spectral Transitions from the Rydberg Autonionization States of a Li-Like Mg X Ion”, Journal of Experimental and Theoretical Physics 95, N. 3 (2002), 421–428.CrossRefADSGoogle Scholar
  22. 22.
    K. B. Fournier et al., “Rydberg transitions in the spectra of near-neon-like Cu and Zn ions in different laser-produced plasmas: observations and modeling”, Journal of Quantitative Spectroscopy & Radiative Transfer 81 (2003), 167–182.CrossRefADSGoogle Scholar
  23. 23.
    K. B. Fournier, A. Ya. Faenov, T. A. Pikuz, A. I. Magunov, I. Yu. Skobelev, V. S. Belyaev, V. I. Vinogradov, A. S. Kyrilov, A. P. Matafonov, F. Flora, S. Bollanti, P. Di Lazzaro, D. Murra, A. Reale, L. Reale, G. Tomassetti, A. Ritucci, M. Francucci, S. Martellucci, G. Petrocelli, “Identification and precise measurements of the wavelengths of high-n transitions in N-, O-, and F-like Zn ions”, J. Phys. B: At. Mol. Opt. Phys. 36 (2003), 3787–3796.CrossRefADSGoogle Scholar
  24. 24.
    K. B. Fournier, A. Ya. Faenov, T. A. Pikuz, A. I. Magunov, I. Yu. Skobelev, F. Flora, S. Bollanti, P. Di Lazzaro, D. Murra,, V. S. Belyaev, V. I. Vinogradov, A. S. Kyrilov, A. P. Matafonov, M. Francucci, S. Martellucci, G. Petrocelli, “Analysis of high-n dielectronic Rydberg satellites in the spectra of Na-like Zn XX and Mg-like Zn XIX”, Physical Review E 70, 016406 (2004).CrossRefADSGoogle Scholar
  25. 25.
    A. Ya. Faenov et al., “X-ray Spectroscopic Observations of a Superdense Plasma in Nanoparticles Irradiated by Superintense Femtosecond Laser Radiation”, JETP Letters 80, N. 12 (2004), 730–733.CrossRefADSGoogle Scholar
  26. 26.
    L. Reale, A. Lai, A. Tucci, A. Poma, A. Faenov, T. Pikuz, F. Flora, L. Spano, T. Limongi, L. Palladino, A. Ritucci, G. Tomassetti, G. Petrocelli, M. Francucci, S. Martellucci, “Differences in X-Ray Absorption Due to Cadmium Treatment in Saponaria officinalis Leaves”, Microscopy Research and Technique 64 (2004), 21–29.CrossRefGoogle Scholar
  27. 27.
    T. Pikuz et al. “Easy spectrally tunable highly efficient X-ray backlighting schemes based on spherically bent crystals”, Laser and Particle Beams 22 (2004), 289–300.ADSCrossRefGoogle Scholar
  28. 28.
    R. Falkone, M. Murname, AIP Conf. Proc. 147 (1986), 81.ADSCrossRefGoogle Scholar
  29. 29.
    M. Murname, H. C. Kapteyn, M. D. Rosen, R. Falkone, Science 251 (1991), 531.ADSCrossRefGoogle Scholar
  30. 30.
    A. Ya. Faenov et al., “High-performance X-ray spectroscopic devices for plasma microsources investigations”, Physica Scripta 50 (1994), 333.CrossRefADSGoogle Scholar
  31. 31.
    S. A. Pikuz et al., “High-luminosity monochromatic X-ray backlighting using an incoherent plasma source to study extremely dense plasmas”, Rev. Sci. Instrum. 68 (1997), 740–744.CrossRefADSGoogle Scholar
  32. 32.
    I. Uschmann, K. Fujita, I. Niki, R. Butzbach, H. Nishimura, J. Funakura, M. Nakai, E. Forster, K. Mima, Appl. Opt. 39 (2000), 5865.ADSCrossRefGoogle Scholar
  33. 33.
    J. A. Koch et al., Rev. Sci. Instrum. 74 (2003), 2130.CrossRefADSGoogle Scholar
  34. 34.
    T. A. Pikuz et al., Laser and Particle Beams 19 (2001), 285.CrossRefADSGoogle Scholar
  35. 35.
    A. H. Gabriel, Mon. Not. R. Astron. Soc. 160, (1972), 99.ADSGoogle Scholar
  36. 36.
    C. Biedermann, R. Radtke, K. B. Fournier, Phys. Rev. E 66 (2002), 66.CrossRefGoogle Scholar
  37. 37.
    A. Ya. Faenov et al., Physica Scripta T80 (1999), 536.CrossRefADSGoogle Scholar
  38. 38.
    B. Rosmej, A. Ya. Faenov, Physica Scripta T73 (1997), 106.CrossRefADSGoogle Scholar
  39. 39.
    S. Ya. Khakhalin et al., JETP 78 (1994), 633.ADSGoogle Scholar
  40. 40.
    S. Ya. Khakhalin et al., J. Opt. Soc. Am. B 12 (1995), 1203.ADSCrossRefGoogle Scholar
  41. 41.
    M. D. Rosen et al., Phys. Rev. Lett. 54 (1985), 106.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Martellucci
    • 1
  • M. Francucci
    • 1
  • P. Ciuffa
    • 2
  1. 1.Department of “Ingegneria dell’Impresa”University of Rome “Tor Vergata”RomeItaly
  2. 2.Systems Technology and Processing DepartmentElettronica s.p.a.RomeItaly

Personalised recommendations