Radiative Recombination in a Strong Laser Field

  • Saverio Bivona
  • Riccardo Burlon
  • Gaetano Ferrante
  • Claudio Leone
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 84)


Recent advances of radiative recombination in the presence of strong laser fields are reported. The intense laser radiation is found to introduce new relevant features, among which enhancement and control of the emitted X-ray spectra are the most important. The influence of the plasma medium in which the process generally takes place is considered as well. The results of the recent investigations shed new light on the laser assisted radiative recombination physics and give relevant indications concerning the possibilities to have effective slow electrons and to balance the plasma heating, as needed in important applications.


Radiative Recombination Slow Electron Strong Laser Attosecond Pulse Incoming Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Asp, R. Schuch, D.R. DeWitt, C. Biedermann, H. Gao, W. Zong, G. Andler and E. Justiniano: Nucl. Instrum. Methods: Phys. Res. B 117, 31–37 (1996),“Laser-induced recombination of D+”CrossRefADSGoogle Scholar
  2. 2.
    S. Basile, F. Trombetta and G. Ferrante: Phys. Rev. Lett. 61, 2435–2437 (1988),“Twofold Symmetric Angular Distributions in Multiphoton Ionization with Elliptically Polarized Light”CrossRefADSGoogle Scholar
  3. 3.
    S. Bivona, R. Burlon, G. Ferrante and C. Leone: Laser Physics 13, 1077–1082 (2003),“Strong field effects of multiphoton radiative recombination”Google Scholar
  4. 4.
    S. Bivona, R. Burlon, G. Ferrante and C. Leone: Laser Phys. Letters 1, 86–92 (2004a),“Influence of a plasma medium on laser assisted radiative recombination”CrossRefADSGoogle Scholar
  5. 5.
    S. Bivona, R. Burlon, G. Ferrante and C. Leone: Laser Phys. Letters 1, 118–123 (2004b),“Control of multiphoton radiative recombination through the action of two-frequency fields”CrossRefADSGoogle Scholar
  6. 6.
    S. Bivona, R. Burlon, G. Ferrante and C. Leone: Appl. Phys. B 78, 809–812 (2004c),“Control of radiative recombination by a strong laser field”CrossRefADSGoogle Scholar
  7. 7.
    S. Bivona, R. Burlon, G. Ferrante and C. Leone: to be published in IOSA, (2005),“Radiative Recombination in a Strong Laser Field. Low Frequency Approximation”Google Scholar
  8. 8.
    S. Borneis, F. Bosch, T. Engel, M. Jung, I. Klaft, O. Klepper, T. Kuhl, D. Marx, R. Moshammer, R. Neumann, S. Schroder, P. Seelig and Volker L.: Phys. Rev. Lett. 72, 207–209 (1994),“Laser-stimulated two-step recombination of highly charged ions and electrons in a storage ring”CrossRefADSGoogle Scholar
  9. 9.
    M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G.A. Reider, P.B. Corkum and F. Krausz: Science 291, 1923–1927 (2001),“X-ray pulses approaching the attosecond frontier”CrossRefADSGoogle Scholar
  10. 10.
    G. Duchateau, E. Cornier and R. Gayet: Phys. Rev. A 66, 023412 (2002),“Coulomb-Volkov approach of ionization by extreme-ultraviolet laser pulses in the subfemtosecond regime”CrossRefADSGoogle Scholar
  11. 11.
    G. Ferrante, M. Zarcone and S.A. Uryupin: Plasma Sources Sci Technol. 10, 318–328 (2001),“Electron distribution functions in laser fields”CrossRefADSGoogle Scholar
  12. 12.
    Y. Hahn: Rep. Prog. Phys. 60, 691–759 (1997),“Electron-ion recombination process-an overview”CrossRefADSGoogle Scholar
  13. 13.
    S.X. Hu and L.A. Collins: Phys. Rev. A 70, 013407 (2004),“Phase control of the inverse above-threshold-ionization processes with few-cycle pulses”CrossRefADSGoogle Scholar
  14. 14.
    J. Manoj and T. Narkis: Phys. Rev A 18, 538–545 (1978),“Compton scattering in the presence of coherent electromagnetic radiation”CrossRefGoogle Scholar
  15. 15.
    A. Jaron, J.Z. Kaminski, and Ehlotzky F.: Phys. Rev. A 61, 023404 (2000),“Stimulated radiative recombination and X-ray generation”CrossRefADSGoogle Scholar
  16. 16.
    Y.M. Kuchiev and V.N. Ostrovsky: Phys. Rev. A 61, 033414 (2000),“Multiphoton radiative recombination of electron assisted by a laser field”CrossRefADSGoogle Scholar
  17. 17.
    C. Leone, S. Bivona, R. Burlon and G. Ferrante: Phys. Rev A 38, 5642–5651 (1988),“Two-frequency multiphoton ionization of hydrogen atoms”CrossRefADSGoogle Scholar
  18. 18.
    C. Leone, S. Bivona, R. Burlon and G. Ferrante: Phys. Rev. A 66, 051403(R) (2002),“Strong-field and plasma aspects of multiphoton radiative recombination”Google Scholar
  19. 19.
    D.B. Milosevic and F. Ehlotzky: Phys: Rev. A 65, 042504 (2002),“Rescattering effects in soft-X-ray generation by laser-assisted electron-ion recombination”CrossRefADSGoogle Scholar
  20. 20.
    R. Neumann, H. Poth, A. Winnacker and A. Wolf: Z. Physik. A 313, 253–262 (1983),“Laser-enhanced electron-ion capture and antihydrogen formation”CrossRefADSGoogle Scholar
  21. 21.
    P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H.G. Muller and P. Agostini: Science 292, 1689–1692 (2001),“Observation of a train of attosecond pulses from high harmonic generation”CrossRefADSGoogle Scholar
  22. 22.
    S. Pastuszka, U. Schramm, M. Grieser, C. Broude, R. Grimm, D. Habs, J. Kenntner, H.J. Miesner, T. Schussler, D. Schwalmand A. Wolf: Nucl. Instrum. Methods Phys. Res. A 369, 11–22 (1996),“Electron cooling and recombination experiments with an adiabatically expanded electron beam”CrossRefADSGoogle Scholar
  23. 23.
    T. Quinteros, H. Gao, D.R. DeWitt, R. Schuch, M. Pajek, S. Asp, and Dz. Belkic: Phys. Rev. A 51, 1340–1346 (1995),“Recombination of D+ and He+ ions with low-energy free electrons”CrossRefADSGoogle Scholar
  24. 24.
    M.L. Rogelstad, F.B. Yousif, T.J. Morgan and J.B.A. Mitchell: J. Phy. B 30, 3913–3931 (1997),“Stimulated radiative recombination of H+ and He+”CrossRefADSGoogle Scholar
  25. 25.
    L. Rosenberg: Phys. Rev. A 20, 1352–1358 (1979),“Sum rule and classical limit for scattering in a low-frequency laser field”CrossRefADSGoogle Scholar
  26. 26.
    U. Schramm, J. Berger, M. Grieser, D. Habs, E. Jaeschke, G. Kilgus, D. Schwalm, A. Wolf, R. Neumann and R. Schuch: Phys. Rev. Lett. 67, 22–25 (1991),“Observation of laser-induced recombination in merged electron and proton-beams”CrossRefADSGoogle Scholar
  27. 27.
    U. Schramm, T. Schussler, D. Habs, D. Schwalm and A. Wolf: Hyperfine Interact. 99, 309–316 (1996),“Laser-induced recombination studies with the adiabatically expanded electron beam of the Heidelberg TSR”CrossRefADSGoogle Scholar
  28. 28.
    F.B. Yousif, P. Vanderdonk, Z. Kucherovsky, J. Reis, E. Brannen, J.B.A. Mitchell and T.J. Morgan: Phys. Rev. Lett. 67, 26–29 (1991),“Experimentalobservation of laser-stimulated radiative recombination”CrossRefADSGoogle Scholar
  29. 29.
    C. Wesdorp, F. Robicheaux and L.D. Noordam: Phys. Rev. Lett. 84, 3799–3802 (2000),“Field-induced electron-ion recombination: A novel route towards neutral (anti-) matter”CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Saverio Bivona
    • 1
  • Riccardo Burlon
    • 1
  • Gaetano Ferrante
    • 1
  • Claudio Leone
    • 1
  1. 1.Dipartimento di Fisica e Tecnologie RelativeUniversita di PalermoPalermoItaly

Personalised recommendations