Skip to main content

Long Time Behaviour to the Schrödinger–Poisson–Xα Systems

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 690))

Abstract

This paper1 is intended to constitute a review of some mathematical theories incorporating quantum corrections to the Schrödinger-Poisson (SP) system. More precisely we shall focus our attention in the electrostatic Poisson potential with corrections of power type.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bach: Accuracy of mean field approximations for atoms and molecules. Commun. Math. Phys. 155, 295 (1993).

    MATH  MathSciNet  Google Scholar 

  2. C. Bardos: The weak coupling limit of systems of N quantum particles. In: Euroconference on Asymptotic Methods and Applications in Kinetic and Quantum-Kinetic Theory’, ed. by L.L. Bonilla, J. Soler, J.L. Vézquez (Granada 2001).

    Google Scholar 

  3. O. Bokanowski, B. Grébert, N. Mauser: Approximations de l’ énergie cinétique en fonction de la densité pour un modèle de Coulomb périodique. C.R. Acad. Sci., Math. Phys. 329, 85 (1999).

    MATH  ADS  Google Scholar 

  4. O. Bokanowski, B. Grébert, N. Mauser: Local density approximations for the energy of a periodic Coulomb model. Math. Mod. Meth. Appl. Sci. 13 1185 (2003).

    Article  MATH  Google Scholar 

  5. O. Bokanowski, J.L. López, J. Soler: On an exchange interaction model for quantum transport: the Schrödinger–Poisson–Slater system. Math. Mod. Meth. Appl. Sci. 13 1 (2003).

    Article  Google Scholar 

  6. O. Bokanowski, N. Mauser: Local approximation for the Hartree–Fock exchange potential: a deformation approach. Math. Mod. Meth. Appl. Sci. 9(6) 941 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Castella: L2 solutions to the Schrödinger–Poisson system: existence, uniqueness, time behaviour and smoothing effects. Math. Mod. Meth. Appl. Sci. 8 1051 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Catto, P.L. Lions: Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular systems. Commun. Partial Diff Equ. 17 1051 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Cazenave: An Introduction to Nonlinear Schrödinger Equations, 2nd edn (Textos de Métodos Matemáticos 26, Universidade Federal do Rio de Janeiro 1993).

    Google Scholar 

  10. P.A.M. Dirac: Note on exchange phenomena in the Thomas–Fermi atom. Proc. Cambridge Philos. Soc. 26 376 (1931).

    Article  Google Scholar 

  11. R.M. Dreizler, E.K.U. Gross: Density Functional Theory (Springer, Berlin Heidelberg New York 1990).

    MATH  Google Scholar 

  12. R.S. Ellis: Entropy, Large Deviations and Statistical Mechanics (Springer, Berlin Heidelberg New York 1985).

    MATH  Google Scholar 

  13. G. Friesecke: Pair correlation and exchange phenomena in the free electron gas. Comm. Math. Phys. 184 143 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. M.K. Harbola, V. Sahni: Quantum-mechanical interpretation of the exchange-correlation potential of Kohn–Sham density–functional theory. Phys. Rev. Lett. 62 448 (1989).

    Article  Google Scholar 

  15. I. Gasser, R. Illner, P.A. Markowich et al.: Semiclassical, t → ∞ asymptotics and dispersive effects for Hartree–Fock systems. M2AN 32(6) 699 (1998).

    MATH  MathSciNet  Google Scholar 

  16. R. Illner, P. Zweifel, H. Lange: Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner–Poisson and Schrödinger–Poisson systems. M2AS 17 349 (1994).

    MATH  MathSciNet  Google Scholar 

  17. W. Kohn, L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 A 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. C. LeBris, E. Cancès: On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics. Math. Mod. Meth. Appl. Sci. 9(7) 963 (1999).

    Article  Google Scholar 

  19. E.H. Lieb: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53 603 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. E.H. Lieb: Thomas–Fermi theory. In: Kluwer Encyclopedia of Mathematics, suppl. Vol 2 (2000) pp. 311–313.

    Google Scholar 

  21. E.H. Lieb, M. Loss: Analysis (Graduate Studies in Mathematics, Vol. 14. Amer. Math. Soc., Providence, Rhode Island 2001).

    Google Scholar 

  22. E.H. Lieb, S. Oxford: Improved lower bound on the indirect Coulomb energy. Int. J. Quant. Chem. 19 427 (1981).

    Article  Google Scholar 

  23. E.H. Lieb, B. Simon: The Hartree–Fock theory for Coulomb systems. Comm. Math. Phys. 53 185 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  24. P.L. Lions: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. H. Poincaré 1 109–223 (1984).

    MATH  Google Scholar 

  25. P.L. Lions: Solutions of Hartree–Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. R.G. Parr, W. Yang: Density Functional Theory of Atoms and Molecules (Oxford University Press 1989).

    Google Scholar 

  27. A. Pazy: Semigroups of Linear Operators and Applications to Partial Difierential Equations (Springer, Berlin Heidelberg New York 1983).

    Google Scholar 

  28. R. Penrose: On gravity’ s role in quantum state reduction. Gen. Rel. Grav. 28, 581 (1996).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. A. Puente, L. Serra: Oscillation modes of two-dimensional nanostructures within the time-dependent local-spin-density approximation. Phys. Rev. Lett. 83, 3266 (1999).

    Article  ADS  Google Scholar 

  30. E. Ruíz Arriola, J. Soler: A variational approach to the Schrödinger–Poisson system: asymptotic behaviour, breathers and stability. J. Stat. Phys. 103, 1069 (2001).

    Article  MATH  Google Scholar 

  31. O. Sénchez, in preparation.

    Google Scholar 

  32. O. Sénchez, J. Soler: Long-time dynamics of the Schrödinger–Poisson–Slater system. J. Stat. Phys. 114, 179 (2004).

    Article  ADS  Google Scholar 

  33. O. Sénchez, J. Soler: Asymptotic decay estimates for the repulsive Schrödinger–Poisson system. Math. Mod. Appl. Sci. 27, 371 (2004).

    Article  Google Scholar 

  34. J.C. Slater: A simplification of the Hartree–Fock method. Phys. Rev. 81(3), 385 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bokanowski, O., López, J.L., Sánchez, Ó., Soler, J. (2006). Long Time Behaviour to the Schrödinger–Poisson–Xα Systems. In: Asch, J., Joye, A. (eds) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol 690. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34273-7_17

Download citation

Publish with us

Policies and ethics