Skip to main content

Abstract

Reaction diagrams are considered especially for the circumstance of progressive substitution (or addition) on a fixed molecular skeleton, and it is noted that these naturally form Hasse diagrams for a partially ordered set (or poset) of the substituted structures. The possibility that different properties are similarly ordered is a further natural consideration, and is here illustrated for several different properties for (methyl & chloro) substituted benzenes.

This posetic approach thence provides a novel approach to structure/ property and structure/bioactivity correlations, with focus in some sense beyond simple molecular structure, in that this approach attends to how a structure fits into a systematic (reaction) network of structures. Different manners for fitting and prediction of properties are noted, with illustration of an especially simple “poset-average” scheme. Some numerical evidence indicates that such approaches are quite reasonable. It is emphasized that such directed reaction graphs admitting posetic treatment are widespread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BabiĆ D, DošliĆ T, Klein DJ, Misra A (2004) Kekulénoid Addition Patterns for Fullerenes and some Lower Homologs. Bull Chem Soc Japan 77:2003–2010

    Article  CAS  Google Scholar 

  • Balaban AT (1994) Reaction graphs. Graph Theoretical Approaches to Chemical Reactivity. Ed. D. Bonchev & O. Mekenyan, Kluwer Academic Publishers Dordrecht pp 137–180

    Google Scholar 

  • Bertz SH (1984) The Role of Symmetry in Synthetic Analysis. The Concept of Reflexivity. J Chem Soc Chem Commun 218–219

    Google Scholar 

  • Bertz SH (1986) Synthesis Digraphs and their Vulnerability. The Risk of Failure of Synthesis Plans. J Chem Soc Chem Commun 1627–1628

    Google Scholar 

  • Brüggemann R, Münzer B, Halfon E (1994) An Algebraic/graphical Tool to Compare Ecosystems with Respect to their Pollution — the German river “Elbe” as an Example — I. Hasse diagrams. Chemosphere 28:863–872

    Article  Google Scholar 

  • Brüggemann R, Pudenz S, Carlsen L, Sørensen PB, Thomsen M, Mishra RK, (2001) The Use of Hasse Diagrams as a Potential Approach for Inverse QSAR. SAR and QSAR Environ Res 11:473–487

    Google Scholar 

  • Bytautas L, Klein DJ (2000) Formula Periodic Table for the Isomer Classes of Acyclic Hydrocarbons-Enumerative and Asymptotic Characteristics. Croat Chem Acta 73:331–357

    CAS  Google Scholar 

  • Bytautas L, Klein DJ, Schmalz TG (2000) All Acyclic Hydrocarbons: Formula Periodic Table and Property Overlap Plots via Chemical Combinatorics. New J Chem 24:329–336

    Article  CAS  Google Scholar 

  • Carlsen L, Sørensen PB, Thomsen M (2001) Partial Order Ranking-Based QSAR’s: Estimation of Solubilities and Octanol-Water Partitioning. Chemosphere 43:295–302

    Article  CAS  Google Scholar 

  • Carlsen L., Sørensen PB, Thomsen M, Brüggemann R (2002) QSAR’s Based on Partial Order Ranking. SAR and QSAR in Environ Res 13:153–165

    Article  CAS  Google Scholar 

  • Carlsen L (2004) Giving Molecules an Identity. On the Interplay between QSARs and Partial Order Ranking. Molecules 9:1010–1018

    CAS  Google Scholar 

  • Claus A (1866) Theoretische Betrachtungen und deren Anwendung zur Systemik der organischen Chemie, Frieburg

    Google Scholar 

  • Corey EJ, Choung X-M (1989) The Logic of Chemical Synthesis. Wiley, NY.

    Google Scholar 

  • Dias JR (1985) A Periodic Table for Polycyclic Aromatic Hydrocarbons. Acc Chem Res 18:241–248

    Article  CAS  Google Scholar 

  • Dias JR (1990) A Formula Periodic Table for Benzenoid Hydrocarbons and the Aufbau and Excised Internal Structure Concepts in Benzenoid Enumerations. J Math Chem 4:17–30

    Article  CAS  Google Scholar 

  • Dolfing J, Harrison BK (1993) Redox and Reduction Potentials as Parameters to Predict the Degradation Pathway of Chlorinated Benzenes in Anaerobic Environments. REMS Microbiology Ecology 13:23–30

    Article  CAS  Google Scholar 

  • DošliĆ T, Klein DJ (2005) Splinoid Interpolation on Finete Posets. J Comput Appl Math 177:175–185

    Article  Google Scholar 

  • Eigen M (1971) Molekulare Selbstorganisation und Evolution (Self Organization of Matter and the Evolution of Biological Macromolecules). Naturwissenschaften 58:465–523

    Article  CAS  Google Scholar 

  • Eigen M, Schuster P (1977) The Hyper Cycle. A Principle of Natural Self Organization. Part A. Emergence of the Hyper Cycle. Naturwissenschaften 64:541–565

    Article  CAS  Google Scholar 

  • Hendrickson JB (1977) Systematic Synthesis Design. 6. Yield Analysis and Convergency. J Am Chem Soc 99:5439–5450

    Article  CAS  Google Scholar 

  • Hill TL (1977) Free Energy Transduction in Biology. Academic Press NY

    Google Scholar 

  • Ivanciuc T, Klein DJ (2004) Parameter-Free Structure-Property Correlation via Progressive Reaction Posets for Substituted Benzenes. J Chem Inf Comput Sci 44:610–617

    Article  CAS  Google Scholar 

  • Ivanciuc T, Ivanciuc O, Klein DJ (2005) Posetic Quantitative Superstructure/ Activity Relationships (QSSARs) for Chlorobenzenes. J Chem Inf Model 45: 870–879

    Article  CAS  Google Scholar 

  • Ivanciuc T, Ivanciuc O, Klein DJ (2006) Posetic Quantitative Super-Structure Activity Relationships (QSSAR) for Polychlorinated Biphenyl (PCBs), in Preparation

    Google Scholar 

  • Ivanciuc T, Klein DJ, Ivanciuc O (2005) Posetic Cluster Expansion for Substitution-Reaction Diagrams and its Application to Cyclobutane, J Math Chem, submitted

    Google Scholar 

  • Kekulé A (1865) Sur la Constitution des Substances Aromatiques. Bull Soc Chim Fr 3:98–110

    Google Scholar 

  • Kekulé A (1866) Über die Konstitution und Untersuchung aromatischer Substanzen. Justus Liebigs Ann Chem 137:129

    Google Scholar 

  • Kekulé A (1872) Über einige Condensationsproducte des Aldehyds. Justus Liebigs Ann Chem 162:77–123

    Google Scholar 

  • Klein DJ Periodic Tables and the Formula Periodic Table for all Acyclic Hydrocarbons. Proceedings of Wiener Conference on Periodic Tables, in press

    Google Scholar 

  • Klein DJ, Bytautas L (2000) Directed Reaction Graphs as Posets. MATCH Commun Math & Comput Chem 42:261–289

    CAS  Google Scholar 

  • Klein DJ (1986) Chemical Graph-Theoretic Cluster Expansions. Int J Quantum Chem 20:153–171

    Article  CAS  Google Scholar 

  • Klein DJ, Schmalz TG, Bytautas L (1999) Chemical Sub-Structural Cluster Expansions for Molecular Properties. SAR and QSAR in Environ Res 10:131–156

    CAS  Google Scholar 

  • Körner W (1874) Studj Sull Isomeria Della Cosi Dette Sostanze Aromatiche a sei Atom di Carbonio. Gazz Chim Ital 4:305–446

    Google Scholar 

  • Körner W (1869) Fatti per Servire Alla Determinazione Del Luogo Chimico Nelle Sostanze Aromatiche. Palermo Giornale di Sciencze Naturali ed Economiche, 5:208–256, as summarized by H. E. Armstrong (1876) J Chem Soc 29:204–241

    Google Scholar 

  • Ladenburg A (1869) Bemerkungen zur aromatischen Theorie. Chem Ber 2:140–142 & 272–274

    Article  Google Scholar 

  • LeBel JA (1874) On the Relations which Exist between the Atomic Formulas of Organic Compounds and the Rotatory Power of their Solutions. Bull Soc Chim Fr 22:337

    Google Scholar 

  • Mendeleev DI, Russ Z (1869) Khim Obshch 1:60 [translated, to German] Berichte 2:553

    Google Scholar 

  • RandiĆ M (1992) Chemical Structure — What is “she”. J Chem Ed 69:713–718

    Article  Google Scholar 

  • RandiĆ M, Wilkins CL (1979) Graph Theoretical Ordering of Structures as a Basis for Systematic Searches for Regularities in Molecular Data. J Phys Chem 83:1525–1540

    Google Scholar 

  • RandiĆ M, Wilkins CL (1979) On a Graph-Theoretical Basis for the Ordering of Structures. Chem Phys Lett 63:332–336

    Article  Google Scholar 

  • Rocke AJ (1985) Hypothesis and Experiment in the Early Development of Kekulés Benzene Theory. Ann Sci 42:355–381

    Google Scholar 

  • Rota GC (1964) On the Foundations of Combinatorial Theory. I: Theory of Möbius Functions. Zeit. Wahrscheinlichkeitstheorie und Verw. Gebiete 2:340–368

    Article  Google Scholar 

  • Shtarev AB, Pinkhassik E, Levin MD, Stibor I, Michl J (2001) Partially Bridgefluorinated Dimethyl Bicyclo[1.1.1]Pentane-1,3-Dicarboxylates: Preparation and NMR Spectra. J Am Chem Soc 123:3484–3492

    Article  CAS  Google Scholar 

  • Temkin ON, Zeigarnik AV, Bonchev D (1996) Chemical Reaction Networks: A Graph-Theoretical Approach. CRC Press, Boca Raton, Fl

    Google Scholar 

  • Van’t Hoff JH (1874) Sur les Formules de Structure Dans l’Escpace. Archives Nederlandaises des Sciences Exactes et Naturalles 9:445–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein, D.J., Ivanciuc, T. (2006). Directed Reaction Graphs as Posets. In: Brüggemann, R., Carlsen, L. (eds) Partial Order in Environmental Sciences and Chemistry. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33970-1_3

Download citation

Publish with us

Policies and ethics