Skip to main content

Nonadiabaticity in Modulated Optical Traps

  • Chapter
Device Applications of Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

  • 841 Accesses

Abstract

Experiments on noise-induced escape of a mesoscopic particle in a double-well potential are described. The potential is created by the interaction of two focused laser beams with a single sub-micrometer dielectric particle. By mapping the 3-dimensional trapping potential, the eigenfrequencies of the trapped particle are found. Over-barrier transitions are directly measured as a function of the rate and amplitude of a modulation that periodically tilts the potential. At low modulation rates and amplitudes the particle follows the potential adiabatically. As the system approaches its saddle-node bifurcation, different scaling regions emerge, each characterized by distinctive power-laws as predicted by recent theories. Of particular interest is the presence of a weakly non-adiabatic region with novel critical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ashkin, Phys. Rev. Lett. 24, 156–159 (1970).

    Article  Google Scholar 

  2. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, Optics Letters 11, 288–290 (1986).

    Google Scholar 

  3. R.M. Simmons, J.T. Finer, S. Chu, and J.A. Spudich, Biophys. J. 70, 1813–1822 (1996).

    Article  Google Scholar 

  4. L.P. Ghislain, N.A. Switz, and W.W. Webb, Rev. Sci. Inst. 65, 2762–2768 (1994).

    Article  Google Scholar 

  5. V.N. Smelyanskiy, M.I. Dykman, and B. Golding, Phys. Rev. Lett. 82, 3193–3197 (1999).

    Article  Google Scholar 

  6. L.I. McCann, M.I. Dykman, and B. Golding, Nature 402, 785–787 (1999).

    Article  Google Scholar 

  7. M.I. Dykman, B. Golding, J.R. Kruse, L.I. McCann, and D. Ryvkine in Unsolved Problems of Noise and Fluctuations, AIP Conf. Proc. Vol. 665, edited by S.M. Bezrukov, pp. 428–434 (AIP Publishing, Melville, NY) 2003.

    Chapter  Google Scholar 

  8. M.I. Dykman, B. Golding, and D. Ryvkine, Phys. Rev. Lett. 92 (2004).

    Google Scholar 

  9. D. Ryvkine, M.I. Dykman, and B. Golding, Phys. Rev. E 69, 080602 (2004).

    Article  Google Scholar 

  10. J. Kurkijärvi, Phys. Rev. B 6, 832 (1972).

    Article  Google Scholar 

  11. R.H. Victora, Phys. Rev. Lett. 63, 457 (1989).

    Article  Google Scholar 

  12. M.I. Dykman and M.A. Krivoglaz, Physica A 104, 480 (1980).

    Article  MathSciNet  Google Scholar 

  13. P.C. Mogensen and J. Glückstad, J. Optics Commun. 175, 75–81 (2000).

    Article  Google Scholar 

  14. D.G. Grier, Naturae 424, 810–816 (2003)

    Article  Google Scholar 

  15. D.L.J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, Rev. Sci. Inst. 75, 2960–2970 (2004).

    Article  Google Scholar 

  16. R. Nambiar, A. Gajraj, and J.C. Meiners, Biophys. J. 87, 1972–1980 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kruse, J., Ryvkine, D., Dykman, M., Golding, B. (2006). Nonadiabaticity in Modulated Optical Traps. In: Baglio, S., Bulsara, A. (eds) Device Applications of Nonlinear Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33878-0_3

Download citation

Publish with us

Policies and ethics