Skip to main content

Recent Developments in Circular Colouring of Graphs

  • Conference paper

Part of the Algorithms and Combinatorics book series (AC,volume 26)

Abstract

The study of circular chromatic number Xc(G) of a graph G, which is a refinement of its chromatic number, has been very active in the past decade. Many nice results are obtained, new techniques are developed, and connections to other fields are established. This paper presents a glimpse of the recent progress on this subject. Besides presenting the results, some of the ideas and tools in the proofs are explained, although no detailed proofs are contained.

Keywords

  • Circular chromatic number
  • circular chromatic index
  • circular perfect graphs
  • circular flow number
  • graph homomorphism

This research was partially supported by the National Science Council under grant NSC93-2115-M-110-004.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-33700-8_25
  • Chapter length: 54 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-33700-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. L. Abbott and B. Zhou, The star chromatic number of a graph, J. Graph Theory, 17(3):349–360, 1993.

    MATH  MathSciNet  CrossRef  Google Scholar 

  2. P. Afshani, M. Ghandehari, M. Ghandehari, H. Hatami, R. Tusser-kani, and X. Zhu, Circular chromatic index of graphs of maximum degree 3, J. Graph Theory, 49:325–335, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  3. P. Afshani, H. Hatami, and R. Tusserkani, A note on circular chromatic number of Mycielski graphs, Manuscript, 2003.

    Google Scholar 

  4. D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negam, and K. Ota, Chromatic numbers of quadrangulations on closed surfaces, J. Graph Theory, 37(2):100–114, 2001.

    MATH  MathSciNet  CrossRef  Google Scholar 

  5. E. Babson and D. N. Kozlov, Complexes of graph homomorphisms, Preprint, arXiv:math.CO/0310056, 2003.

    Google Scholar 

  6. J. Bang-Jensen and J. Huang, Convex-round graphs are circular-perfect, J. Graph Theory, 40(3):182–194, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  7. V. C. Barbosa, Concurreny systems with neighbourhood constraints, Ph.D. Dissertation, Computer Science Dept., University of Carlifornia, Los Angeles, 1986.

    Google Scholar 

  8. V. C. Barbosa and E. Gafni, Concurreny in heavily loaded neighbourhood-constrained systems (condensed version), In Proceedings of the 7th International Conference on Distributed Computing Systems (Washington, B.C., Sept. 1987). IEEE Computer Society Press, New York, 1987.

    Google Scholar 

  9. V. C. Barbosa and E. Gafni, Concurreny in heavily loaded neighbourhood-constrained systems, ACM Trans, on Programming Languages and Systems, 11:562–584, 1989.

    CrossRef  Google Scholar 

  10. V. C. Barbosa, The interleaved multichromatic number of a graph, Ann. Comb., 6(3–4):249–256, 2002.

    MATH  MathSciNet  Google Scholar 

  11. B. L. Bauslaugh and X. Zhu, Circular colourings of infinite graphs, Bull. Inst. Combin. Appl., 24:79–80, 1998.

    MATH  MathSciNet  Google Scholar 

  12. D. Bokal, G. Fijavž, M. Juvan, P. Mark Kayll, and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory, 46(3):227–240, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  13. A. J. Bondy and P. Hell, A note on the star chromatic number, J. Graph Theory, 14(4):479–482, 1990.

    MATH  MathSciNet  CrossRef  Google Scholar 

  14. O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D.B. West, Homo-morphisms from sparse graphs with large girth, J. Combin. Theory Ser. B, 90(1):147–159, 2004. Dedicated to Adrian Bondy and U. S. R. Murty.

    MATH  MathSciNet  CrossRef  Google Scholar 

  15. A. Bouchet, Nowhere-zero integral flows on a bidirected graph, J. Combin. Theory Ser. B, 34(3):279–292, 1983.

    MATH  MathSciNet  CrossRef  Google Scholar 

  16. R. C. Brewster and P. Hell, Homomorphisms to powers of digraphs, Biscrete Math., 244(1–3):31–41, 2002. Algebraic and topological methods in graph theory (Lake Bled, 1999).

    MATH  MathSciNet  CrossRef  Google Scholar 

  17. S. A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combin., 1(1):167–190, 1976.

    MATH  Google Scholar 

  18. G. J. Chang, A survey on circular chromatic numbers of graphs, In First International Congress of Chinese Mathematicians (Beijing, 1998), volume 20 of AMS/IP Stud. Adv. Math., pages 497–502. Amer. Math. Soc, Providence, RI, 2001.

    Google Scholar 

  19. G. J. Chang, L. Huang, and X. Zhu, Circular chromatic numbers and fractional chromatic numbers of distance graphs, European J. Combin., 19(4):423–431, 1998.

    MATH  MathSciNet  CrossRef  Google Scholar 

  20. G. J. Chang, L. Huang, and X. Zhu, Circular chromatic numbers of Mycielski’s graphs, Biscrete Math., 205(1–3):23–37, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  21. G.J. Chang, D.D.-F. Liu, and X. Zhu, Distance graphs and T-coloring, J. Combin. Theory Ser. B, 75(2):259–269, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  22. C. Chien and X. Zhu, The circular chromatic number of series-parallel graphs with large girth, J. Graph Theory, 33(4): 185–198, 2000.

    MATH  MathSciNet  CrossRef  Google Scholar 

  23. S. Coulonges, A. Pêcher, and A.K. Wagler, Triangle-free strongly circular perfect graphs, Manuscript, 2005.

    Google Scholar 

  24. S. Coulonges, A. Pêcher, and A.K. Wagler, On strongly circular perfectness, Manuscript, 2005.

    Google Scholar 

  25. W. A. Deuber and X. Zhu, Circular colorings of weighted graphs, J. Graph Theory, 23(4):365–376, 1996.

    MATH  MathSciNet  CrossRef  Google Scholar 

  26. M. DeVos, Flows on bidirected graphs, Manuscript, 2002.

    Google Scholar 

  27. M. DeVos, L. Goddyn, B. Mohar, D. Vertigan, and X. Zhu, Coloring-flow duality of embedded graphs, Trans. Amer. Math. Soc, 357(10):3993–4016 (electronic), 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  28. D. Duffus, B. Sands, and R. E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory, 9(4):487–495, 1985.

    MATH  MathSciNet  Google Scholar 

  29. M. H. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica, 5(2):121–126, 1985.

    MATH  MathSciNet  CrossRef  Google Scholar 

  30. T. Emden-Weinert, S. Hougardy, and B. Kreuter, Uniquely colourable graphs and the hardness of colouring graphs of large girth, Combin. Probab. Comput., 7(4):375–386, 1998.

    MATH  MathSciNet  CrossRef  Google Scholar 

  31. G. Fan, Circular chromatic number and Mycielski graphs, Combinatorica, 24(1): 127–135, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  32. T. Feder, P. Hell, and B. Mohar, Acyclic homomorphisms and circular colorings of digraphs, SIAM J. Discrete Math., 17(1):161–169 (electronic), 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  33. G. Fijavž, M. Juvan, B. Mohar, and R. Škrekovski, Circular colorings of planar graphs with prescribed girth, preprint, 2001.

    Google Scholar 

  34. A. Galluccio and L. A. Goddyn, The circular flow number of a 6-edge connected graph is less than four, Combinatorica, 22(3):455–459, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  35. A. Galluccio, L. A. Goddyn, and P. Hell, High-girth graphs avoiding a minor are nearly bipartite, J. Combin. Theory Ser. B, 83(1):1–14, 2001.

    MATH  MathSciNet  CrossRef  Google Scholar 

  36. G. Gao and X. Zhu, Star-extremal graphs and the lexicographic product, Discrete Math., 152(1–3):147–156, 1996.

    MATH  MathSciNet  CrossRef  Google Scholar 

  37. M. Ghebleh, D. Král’, S. Norine, and R. Thomas, Circular chromatic index of flower snarks, J. Graph Theory, to appear.

    Google Scholar 

  38. L. Goddyn, Wide embedded graphs behave chromatically like plane or projective plane, In Graph Theory, Mathematisches Forschungsin-stitut Oberwolfach, Report No. 3. 2005.

    Google Scholar 

  39. L. A. Goddyn, M. Tarsi, and C.-Q. Zhang, On (k, d)-colorings and fractional nowhere-zero flows, J. Graph Theory, 28(3):155–161, 1998.

    MATH  MathSciNet  CrossRef  Google Scholar 

  40. B. Grünbaum, Conjecture 6, in “Recent progress in combinatorics”, Proceedings of the Third Waterloo Conference on Combinatorics, May 1968. Edited by W. T. Tutte. Academic Press, New York, 1969.

    Google Scholar 

  41. D.R. Guichard, Acyclic graph coloring and the complexity of the star chromatic number, J. Graph Theory, 17(2):129–134, 1993.

    MATH  MathSciNet  Google Scholar 

  42. A. Gyárfás, T. Jensen, and M. Stiebitz, On graphs with strongly independent color-classes, J. Graph Theory, 46(1):1–14, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  43. A. Hackmann and A. Kemnitz, The circular chromatic index, Discrete Math., 286(1–2):89–93, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  44. R. Häggkvist, P. Hell, D. J. Miller, and V. Neumann Lara, On multiplicative graphs and the product conjecture, Combinatorica, 8(1):63–74, 1988.

    MATH  MathSciNet  CrossRef  Google Scholar 

  45. G. Hahn and C. Tardif, Graph homomorphisms: structure and symmetry, In Graph symmetry (Montreal, PQ, 1996), volume 497 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 107–166. Kluwer Acad. Publ., Dordrecht, 1997.

    Google Scholar 

  46. H. Hajiabolhassan and X. Zhu, Circular chromatic number and My-cielski construction, J. Graph Theory, 44(2):106–115, 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  47. H. Hajiabolhassan and X. Zhu, Circular chromatic number of Kneser graphs, J. Combin. Theory Ser. B, 88(2):299–303, 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  48. H. Hajiabolhassan and X. Zhu, Circular chromatic number of sub-graphs, J. Graph Theory, 44(2):95–105, 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  49. H. Hajiabolhassan and X. Zhu, Sparse H-colourable graphs of bounded maximum degree, Graphs Combin.,20(1):65–71, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  50. H. Hatami and R. Tusserkani, On the complexity of the circular chromatic number, J. Graph Theory, 47(3):226–230, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  51. H. Hatami, Random cubic graphs are not homomorphic to the cycle of size 7, J. Combin. Theory Ser. B, 93(2):319–325, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  52. H. Hatami and X. Zhu, The fractional chromatic number of graphs of maximum degree at most three, Manuscript, 2005.

    Google Scholar 

  53. S. Hedetniemi, Homomorphisms and graph automata, University of Michigan Technical Report 03105-44-T, 1966.

    Google Scholar 

  54. P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48(1):92–110, 1990.

    MATH  MathSciNet  CrossRef  Google Scholar 

  55. P. Hell and J. Nešetřil, Graphs and Homomorphisms, Clarendon Press · Oxford, Oxford, 2004.

    MATH  Google Scholar 

  56. P. Hell and X. Zhu, The circular chromatic number of series-parallel graphs, J. Graph Theory, 33(1):14–24, 2000.

    MATH  MathSciNet  CrossRef  Google Scholar 

  57. A. J. Hoffman, Some recent applications of the theory of linear in-equalities to exremal combinatorial analysis, Combinatorial Analysis: Proceedings of the Tenth Symposium in Applied Mathematics of the American Mathematical Society. R. Bellman and M. Hall Jr., Eds., pages 113–128, 1960.

    Google Scholar 

  58. L. Huang and G. J. Chang, Circular chromatic numbers of distance graphs with distance sets missing multiples, European J. Combin., 21(2):241–248, 2000.

    MATH  MathSciNet  CrossRef  Google Scholar 

  59. J. Hutchinson, R. Bruce Richter, and P. Seymour, Colouring Eulerian triangulations, J. Combin. Theory Ser. B, 84(2):225–239, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  60. J. P. Hutchinson, Three-coloring graphs embedded on surfaces with all faces even-sided, J. Combin. Theory Ser. B, 65(1):139–155, 1995.

    MATH  MathSciNet  CrossRef  Google Scholar 

  61. F. Jaeger and T. Swart, Conjecture 1 in “Combinatorics 79” (M. Deza and I. G. Rosenberg, Eds.), Ann. Discrete Math., 9:305, 1980.

    Google Scholar 

  62. F. Jaeger, Nowhere-zero flow problems, In Selected topics in graph theory, 3, pages 71–95. Academic Press, San Diego, CA, 1988.

    Google Scholar 

  63. W. Jhan, Circular chromatic indexes of generalized necklaces, Master Thesis, National Sat-yen Sun University, 2005.

    Google Scholar 

  64. A. Johnson, F. C. Holroyd, and S. Stahl, Multichromatic num-bers, star chromatic numbers and Kneser graphs, J. Graph Theory, 26(3):137–145, 1997.

    MATH  MathSciNet  CrossRef  Google Scholar 

  65. T. Kaiser, D. Král’, and R. Škrekovski, A revival of the girth conjec-ture, J. Combin. Theory Ser. B, 92(1):41–53, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  66. T. Kaiser, D. Král’, R. Škrekovski, and X. Zhu, The circular chromatic index of graphs of large girth, J. Combin. Theory Ser. B, submitted.

    Google Scholar 

  67. W. Klostermeyer and C. Q. Zhang, (2 + ε)-coloring of planar graphs with large odd-girth, J. Graph Theory, 33(2):109–119, 2000.

    MATH  MathSciNet  CrossRef  Google Scholar 

  68. M. Kneser, Aufgabe 360, Jahresbericht der Deutschen Mathematiker-Vereinigung, 58:2. Abteilung, S. 27, 1955.

    Google Scholar 

  69. M. Kochol, Snarks without small cycles, J. Combin. Theory Ser. B, 67(1):34–47, 1996.

    MATH  MathSciNet  CrossRef  Google Scholar 

  70. P. Che Bor Lam, W. Lin, G. Gu, and Z. Song, Circular chromatic number and a generalization of the construction of Mycielski, J. Gombin. Theory Ser. B, 89(2): 195–205, 2003.

    MATH  CrossRef  Google Scholar 

  71. B. Larose and C. Tardif, Hedetniemi’s conjecture and the retracts of a product of graphs, Combinatorial, 20(4):531–544, 2000.

    MATH  MathSciNet  CrossRef  Google Scholar 

  72. B. Larose and C. Tardif, Strongly rigid graphs and projectivity, Mult.-Valued Log., 7(5–6):339–361, 2001. Ivo G. Rosenberg’s 65th birthday, Part 2.

    MATH  MathSciNet  Google Scholar 

  73. B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, J. Graph Theory, 40(3):162–171, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  74. S.-C. Liaw, Z. Pan, and X. Zhu, Construction of K n -minor free graphs with given circular chromatic number, Discrete Math., 263(1–3):191–206, 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  75. K.-W. Lih and D.D.-F. Liu, Circular chromatic numbers of some reduced Kneser graphs, J. Graph Theory, 41(1):62–68, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  76. K.-W. Lih, D. D.-F. Liu, and X. Zhu, Star extremal circulant graphs, SIAM J. Discrete Math., 12(4):491–499 (electronic), 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  77. W. Lin, Some star extremal circulant graphs, Discrete Math., 271(1–3):169–177, 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  78. W. Lin and G. Gu, A necessary and sufficient condition for a vertex-transitive graph to be star extremal, J. Southeast Univ. (English Ed.), 20(3):374–377, 2004.

    MATH  MathSciNet  Google Scholar 

  79. W. Lin, P. Che Bor Lam, and Z. Song, Circular chromatic numbers of some distance graphs, Discrete Math., 292(1–3):119–130, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  80. D.D.-F. Liu and X. Zhu, Distance graphs with missing multiples in the distance sets, J. Graph Theory, 30(4):245–259, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  81. D.D.-F. Liu, Circular chromatic number for iterated Mycielski graphs, Discrete Math., 285(1–3):335–340, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  82. D.D.-F. Liu and X. Zhu, Coloring the cartesian sum of graphs, Manuscript, 2005.

    Google Scholar 

  83. L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Gombin. Theory Ser. A, 25(3):319–324, 1978.

    MATH  CrossRef  Google Scholar 

  84. T. Łuczak and J. Nešetřil, Note on projective graphs, J. Graph Theory, 47(2):81–86, 2004.

    MathSciNet  CrossRef  MATH  Google Scholar 

  85. F. Meunier, A topological lower bound for the circualr chromatic number of schrijver graphs, J. Graph Theory, 49:257–261, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  86. B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory, 43(2):107–116, 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  87. B. Mohar, Hajós theorem for colorings of edge-weighted graphs, Com-binatorica, 25(1):65–76, 2005.

    MATH  MathSciNet  Google Scholar 

  88. B. Mohar and P. D. Seymour, Coloring locally bipartite graphs on surfaces, J. Gombin. Theory Ser. B, 84(2):301–310, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  89. D. Moser, The star chromatic number of line graphs, In Graph theory, combinatorics, and algorithms, Vol. 1,2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., pages 819–823. Wiley, New York, 1995.

    Google Scholar 

  90. D. Moser, The star-chromatic number of planar graphs, J. Graph Theory, 24(1):33–43, 1997.

    MATH  MathSciNet  CrossRef  Google Scholar 

  91. V. Müller, On colorings of graphs without short cycles, Discrete Math., 26(2):165–176, 1979.

    MATH  MathSciNet  CrossRef  Google Scholar 

  92. A. Nadolski, The circular chromatic index of some class 2 graphs, Discrete Math., to appear.

    Google Scholar 

  93. A. Nakamoto, S. Negami, K. Ota, and J. Širáň, Planar triangulations which quadrangulate other surfaces, European J. Combin., 25(6):817–833, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  94. J. Nešetřil and Y. Nigussie, Density of universal classes in g/K 4, Manuscript, 2005.

    Google Scholar 

  95. J. Nešetřil, Aspects of structural combinatorics (graph homomor-phisms and their use), Taiwanese J. Math., 3(4):381–423, 1999.

    MathSciNet  MATH  Google Scholar 

  96. J. Nešetřil, The homomorphism structure of classes of graphs, Corn-bin. Probab. Comput., 8(1–2):177–184, 1999. Recent trends in combi natorics (Mátraháza, 1995).

    CrossRef  MATH  Google Scholar 

  97. J. Nešetřil and X. Zhu, Construction of sparse graphs with prescribed circular colorings, Discrete Math., 233(1–3):277–291, 2001. Graph theory (Prague, 1998).

    MathSciNet  MATH  Google Scholar 

  98. J. Nešetřil and X. Zhu, On sparse graphs with given colorings and homomorphisms, J. Combin. Theory Ser. B, 90(1):161–172, 2004. Dedicated to Adrian Bondy and U. S. R. Murty.

    MathSciNet  CrossRef  MATH  Google Scholar 

  99. Z. Pan and X. Zhu, The circular chromatic number of series-parallel graphs of large odd girth, Discrete Math., 245(1–3):235–246, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  100. Z. Pan and X. Zhu, Tight relation between the circular chromatic number and the girth of series-parallel graphs, Discrete Math., 254(1–3):393–404, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  101. Z. Pan and X. Zhu, Construction of graphs with given circular flow numbers, J. Graph Theory, 43(4):304–318, 2003.

    MATH  MathSciNet  CrossRef  Google Scholar 

  102. Z. Pan and X. Zhu, Density of the circular chromatic numbers of series-parallel graphs, J. Graph Theory, 46(1):57–68, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  103. Z. Pan and X. Zhu, Graphs of large girthwith prescribed partial circular colourings, Graphs Combin., 21:119–129, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  104. Z. Pan and X. Zhu, On minimal circular imperfect graphs, In preparation, 2005.

    Google Scholar 

  105. A. Pêcher and X. Zhu, On the circular chromatic number of circular partitionable graphs, J. Graph Theory, to appear.

    Google Scholar 

  106. A. Pêcher, A.K. Wagler, and X. Zhu, Three classes of minimal circular-imperfect graphs, Manuscript, 2005.

    Google Scholar 

  107. S. Poljak and V. Rödl, On the arc-chromatic number of a digraph, J. Combin. Theory Ser. B, 31(2):190–198, 1981.

    MATH  MathSciNet  CrossRef  Google Scholar 

  108. S. Poljak, Coloring digraphs by iterated antichains, Comment. Math. Univ. Carolin., 32(2):209–212, 1991.

    MATH  MathSciNet  Google Scholar 

  109. A. Raspaud and X. Zhu, List circular coloring of trees and cycles, Manuscript, 2003.

    Google Scholar 

  110. N. Sauer and X. Zhu, An approach to Hedetniemi’s conjecture, J. Graph Theory, 16(5):423–436, 1992.

    MATH  MathSciNet  Google Scholar 

  111. N. Sauer, Hedetniemi’s conjecture-a survey, Discrete Math., 229(1–3):261–292, 2001. Combinatorics, graph theory, algorithms and applications.

    MATH  MathSciNet  CrossRef  Google Scholar 

  112. A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wish. (3), 26(3):454–461, 1978.

    MATH  MathSciNet  Google Scholar 

  113. F. B. Shepherd, Applying Lehman’s theorem to packing problems, Math. Programming, 71:353–367, 1995.

    MathSciNet  Google Scholar 

  114. G. Simonyi and G. Tardos, Local chromatic number, ky fan’s theorem, and circualr colorings, Preprint, arXiv:math.CO/0407075, 2004.

    Google Scholar 

  115. C.-A. Soh, The circular chromatic number of planar digraphs, Manuscript, 2004.

    Google Scholar 

  116. E. Steffen, Circular flow numbers of regular multigraphs, J. Graph Theory, 36(1):24–34, 2001.

    MATH  MathSciNet  CrossRef  Google Scholar 

  117. E. Steffen and X. Zhu, Star chromatic numbers of graphs, Combinatorica, 16(3):439–448, 1996.

    MATH  MathSciNet  CrossRef  Google Scholar 

  118. R. Steinberg, Grotzsch’s theorem dualized, M. Math Thesis, University of Waterloo, Ontario, Canada, 1976.

    Google Scholar 

  119. M. Stiebitz, Beiträge zur theorie der färbungskritischen graphen, Habilitation, TH Illmenau, 1985.

    Google Scholar 

  120. B. Sudakov, Nowhere-zero flows in random graphs, J. Gombin. Theory Ser. B, 81(2):209–223, 2001.

    MATH  MathSciNet  CrossRef  Google Scholar 

  121. C. Tardif, The chromatic number of the product of two graphs is at least half the minimum of the fractional chromatic numbers of the factors, Comment. Math. Univ. Garolin., 42(2):353–355, 2001.

    MATH  MathSciNet  Google Scholar 

  122. C. Tardif, Chromatic numbers of products of tournaments: fractional aspects of Hedetniemi’s conjecture, In Graphs, morphisms and statistical physics, volume 63 of DIMACS Ser. Discrete Math. Theo-ret. Gomput. Sci., pages 171–175. Amer. Math. Soc, Providence, RI, 2004.

    MathSciNet  Google Scholar 

  123. C. Tardif, The fractional chromatic number of the catoegorial product of graphs, Preprint, 2005.

    Google Scholar 

  124. C. Tardif, Multiplicative graphs and semi-lattice endmorphisms in the catoegory of graphs, J. Gombin. Theory Ser. B, to appear.

    Google Scholar 

  125. C. Tardif and X. Zhu, On Hedetniemi’s conjecture and the colour template scheme, Discrete Math., 253(1–3):77–85, 2002. Combinatorics and algorithms (Hsin Chu/Kaohsiung, 2000).

    MATH  MathSciNet  CrossRef  Google Scholar 

  126. R. Thomas and B. Walls, Three-coloring Klein bottle graphs of girth five, J. Gombin. Theory Ser. B, 92(1):115–135, 2004.

    MATH  MathSciNet  CrossRef  Google Scholar 

  127. C. Thomassen, Five-coloring maps on surfaces, J. Gombin. Theory Ser. B, 59(1):89–105, 1993.

    MATH  MathSciNet  CrossRef  Google Scholar 

  128. C. Thomassen, Grötzsch’s 3-color theorem and its counterparts for the torus and the projective plane, J. Gombin. Theory Ser. B, 62(2):268–279, 1994.

    MATH  MathSciNet  CrossRef  Google Scholar 

  129. C. Thomassen, The chromatic number of a graph of girth 5 on a fixed surface, J. Gombin. Theory Ser. B, 87(1):38–71, 2003. Dedicated to Crispin St. J. A. Nash-Williams.

    MATH  MathSciNet  CrossRef  Google Scholar 

  130. D. Turzik, A note on chromatic number of direct product of graphs, Comment. Math. Univ. Garolin., 24(3):461–463, 1983.

    MATH  MathSciNet  Google Scholar 

  131. W. T. Tutte, A contribution to the theory of chromatic polynomials, Canadian J. Math., 6:80–91, 1954.

    MATH  MathSciNet  Google Scholar 

  132. W. T. Tutte, A class of Abelian groups, Ganad. J. Math., 8:13–28, 1956.

    MATH  MathSciNet  Google Scholar 

  133. W. T. Tutte, On the algebraic theory of graph colorings, J. Combinatorial Theory, 1:15–50, 1966.

    MATH  MathSciNet  Google Scholar 

  134. A. Vince, Star chromatic number, J. Graph Theory, 12(4):551–559, 1988.

    MATH  MathSciNet  Google Scholar 

  135. A. K. Wagler, Antiwebs are rank-perfect, Quarterly Journal of the Belgian, French and Italian OR Societies, 2003.

    Google Scholar 

  136. E. Welzl, Symmetric graphs and interpretations, J. Combin. Theory Ser. B, 37(3):235–244, 1984.

    MATH  MathSciNet  CrossRef  Google Scholar 

  137. D. West and X. Zhu, Circular chromatic indexes of cartesian product of graphs, Manuscript, 2004.

    Google Scholar 

  138. J. Wu and W. Lin, Circular chromatic numbers and fractional chromatic numbers of distance graphs with distance sets missing an interval, Ars Combin., 70:161–168, 2004.

    MATH  MathSciNet  Google Scholar 

  139. B. Xu, An analogue of dirac’s theorem on circular critical graphs, Manuscript, 2005.

    Google Scholar 

  140. B. Xu, A family of minimally circular-imperfect series-parallel graphs, Manuscript, 2005.

    Google Scholar 

  141. B. Xu, On minimally circular-imperfect graphs with a major vertex, Manuscript, 2005.

    Google Scholar 

  142. C. Yang, Perfectness of the complements of circular complete graphs, Master Thesis, National Sat-yen Sun University, 2005.

    Google Scholar 

  143. H.-G. Yeh, A dynamic view of circular colorings, Manuscript, 2005.

    Google Scholar 

  144. H.-G. Yeh and X. Zhu, Resource-sharing system scheduling and circular chromatic number, Theoret. Comput. Sci., 332(1–3):447–460, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  145. C.-Q. Zhang, Integer flows and cycle covers of graphs, volume 205 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1997.

    Google Scholar 

  146. C.-Q. Zhang, Circular flows of nearly Eulerian graphs and vertexsplitting, J. Graph Theory, 40(3):147–161, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  147. B. Zhou, Some theorems concerning the star chromatic number of a graph, J. Combin. Theory Ser. B, 70(2):245–258, 1997.

    MATH  MathSciNet  CrossRef  Google Scholar 

  148. X. Zhu, Star chromatic numbers and products of graphs, J. Graph Theory, 16(6):557–569, 1992.

    MATH  MathSciNet  Google Scholar 

  149. X. Zhu, On the bounds for the ultimate independence ratio of a graph, Discrete Math., 156(1–3):229–236, 1996.

    MATH  MathSciNet  CrossRef  Google Scholar 

  150. X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory, 23(1):33–41, 1996.

    MATH  MathSciNet  CrossRef  Google Scholar 

  151. X. Zhu, A survey on Hedetniemi’s conjecture, Taiwanese J. Math., 2(1):1–24, 1998.

    MATH  MathSciNet  Google Scholar 

  152. X. Zhu, Circular colouring and graph homomorphism, Bull. Austral. Math. Soc, 59(1):83–97, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  153. X. Zhu, Construction of uniquely H-colorable graphs, J. Graph Theory, 30(1):1–6, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  154. X. Zhu, Graphs whose circular chromatic number equals the chromatic number, Combinatorica, 19(1):139–149, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  155. X. Zhu, Planar graphs with circular chromatic numbers between 3 and 4, J. Combin. Theory Ser. B, 76(2): 170–200, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  156. X. Zhu, A simple proof of Moser’s theorem, J. Graph Theory, 30(1):19–26, 1999.

    MATH  MathSciNet  CrossRef  Google Scholar 

  157. X. Zhu, Circular chromatic number and graph minors, Taiwanese J. Math., 4(4):643–660, 2000.

    MATH  MathSciNet  Google Scholar 

  158. X. Zhu, An analogue of Hajós’ theorem for the circular chromatic number, Proc. Amer. Math. Soc, 129(10):2845–2852 (electronic), 2001.

    MATH  MathSciNet  CrossRef  Google Scholar 

  159. X. Zhu, Circular chromatic number: a survey, Discrete Math., 229(1–3):371–410, 2001. Combinatorics, graph theory, algorithms and applications.

    MATH  MathSciNet  CrossRef  Google Scholar 

  160. X. Zhu, Circular chromatic number of planar graphs of large odd girth, Electron. J. Gombin., 8(1):Research Paper 25, 11 pp. (electronic), 2001.

    Google Scholar 

  161. X. Zhu, Circular chromatic number of distance graphs with distance sets of cardinality 3, J. Graph Theory, 41(3):195–207, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  162. X. Zhu, Circular colouring and orientation of graphs, J. Gombin. Theory Ser. B, 86(1):109–113, 2002.

    MATH  CrossRef  Google Scholar 

  163. X. Zhu, The fractional chromatic number of the direct product of graphs, Glasg. Math. J., 44(1):103–115, 2002.

    MATH  MathSciNet  CrossRef  Google Scholar 

  164. X. Zhu, An analogue of Hajós’ theorem for the circular chromatic number, II, Graphs Gombin., 19(3):419–432, 2003.

    MATH  CrossRef  Google Scholar 

  165. X. Zhu, The circular chromatic number of induced subgraphs, J. Gombin. Theory Ser. B, 92(1):177–181, 2004.

    MATH  CrossRef  Google Scholar 

  166. X. Zhu, Perfect graphs for generalized colouring-circular perfect graphs, AMS, DIMACS series: Proceedings of the DI-MAGS/DIMATIA Workshop on Graphs, Morphisms and Statistical Physics, 63:177–193, 2004.

    Google Scholar 

  167. X. Zhu, Circular choosability of graphs, J. Graph Theory, 48(3):210–218, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

  168. X. Zhu, Circular perfect graphs, J. Graph Theory, 48(3): 186–209, 2005.

    MATH  MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, X. (2006). Recent Developments in Circular Colouring of Graphs. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds) Topics in Discrete Mathematics. Algorithms and Combinatorics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33700-8_25

Download citation