Skip to main content

Abstract

Porous materials such as aerogel, porous rocks or cements exhibit a fractal structure for a range of length scales [1]. Diffusion processes in such disordered media are widely studied in the physical literature [2, 3]. They exhibit an anomalous behavior in terms of the asymptotic time scaling of the mean square displacement of the diffusive particles

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. B. B. Mandelbrot. Fractals - Form, Chance and Dimension. W. H. Freeman, San Francisco, 1977.

    MATH  Google Scholar 

  2. 2. S. Havlin and D. Ben-Avraham. Diffusion in disordered media. Adv. Phys., 36(6):695–798, 1987.

    Article  Google Scholar 

  3. 3. A. Bunde and S. Havlin, editors. Fractals and Disordered Systems. Springer, Berlin, Heidelberg, New-York, 2nd edition edition, 1996.

    MATH  Google Scholar 

  4. 4. K. J. Falconer. Techniques in fractal geometry. John Wiley & Sons Ltd, Chichester, 1997.

    MATH  Google Scholar 

  5. 5. P. Tetali. Random walks and the effective resistance of networks. J. Theor. Prob., 4(1):101–109, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  6. 6. J. A. Given and B. B. Mandelbrot. Diffusion on fractal lattices and the fractal Einstein relation. J. Phys. B: At. Mol. Opt. Phys., 16:L565–L569, 1983.

    MathSciNet  Google Scholar 

  7. 7. M. T. Barlow, R. F. Bass, and J. D. Sherwood. Resistance and spectral dimension of Sierpinski carpets. J. Phys. A: Math. Gen., 23(6):L253–L238, 1990.

    Article  MathSciNet  Google Scholar 

  8. 8. A. Franz, C. Schulzky, and K. H. Hoffmann. The Einstein relation for finitely ramified Sierpinski carpets. Nonlinearity, 14(5):1411–1418, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  9. 9. C. Schulzky, A. Franz, and K. H. Hoffmann. Resistance scaling and random walk dimensions for finitely ramified Sierpinski carpets. SIGSAM Bulletin, 34(3):1–8, 2000.

    Article  MATH  Google Scholar 

  10. 10. A. Franz, C. Schulzky, S. Seeger, and K. H. Hoffmann. Diffusion on fractals — efficient algorithms to compute the random walk dimension. In J. M. Blackledge, A. K. Evans, and M. J. Turner, editors, Fractal Geometry: Mathematical Methods, Algorithms, Applications, IMA Conference Proceedings, pages 52–67. Horwood Publishing Ltd., Chichester, West Sussex, 2002.

    Google Scholar 

  11. 11. A. Franz, C. Schulzky, and K. H. Hoffmann. Using computer algebra methods to determine the chemical dimension of finitely ramified Sierpinski carpets. SIGSAM Bulletin, 36(2):18–30, 2002.

    Article  MATH  Google Scholar 

  12. 12. A. Franz, C. Schulzky, S. Tarafdar, and K. H. Hoffmann. The pore structure of Sierpinski carpets. J. Phys. A: Math. Gen., 34(42):8751–8765, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  13. 13. P. Blaudeck, S. Seeger, C. Schulzky, K. H. Hoffmann, T. Dutta, and S. Tarafdar. The coastline and lake shores of a fractal island. J. Phys. A: Math. Gen., 39:1609–1618, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  14. 14. S. Seeger, A. Franz, C. Schulzky, and K. H. Hoffmann. Random walks on finitely ramified Sierpinski carpets. Comp. Phys. Comm., 134(3):307–316, 2001.

    Article  MATH  Google Scholar 

  15. 15. S. Tarafdar, A. Franz, S. Schulzky, and K. H. Hoffmann. Modelling porous structures by repeated Sierpinski carpets. Physica A, 292(1–4):1–8, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  16. 16. D. H. N. Anh, K. H. Hoffmann, S. Seeger, and S. Tarafdar. Diffusion in disordered fractals. Europhys. Lett., 70(1):109–115, 2005.

    Article  Google Scholar 

  17. 17. A. Franz, C. Schulzky, S. Seeger, and K. H. Hoffmann. An efficient implementation of the exact enumeration method for random walks on Sierpinski carpets. Fractals, 8(2):155–161, 2000.

    Article  Google Scholar 

  18. 18. R. Dasgupta, T. K. Ballabh, and S. Tarafdar. Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: A new algorithm for infinite fractal lattices. J. Phys. A: Math. Gen., 32(37):6503–6516, 1999.

    Article  MathSciNet  Google Scholar 

  19. 19. B. O'Shaughnessy and I. Procaccia. Analytical solutions for diffusion on fractal objects. Phys. Rev. Lett., 54(5):455–458, 1985.

    Article  MathSciNet  Google Scholar 

  20. 20. M. Giona and H. E. Roman. Fractional diffusion equation for transport phenomena in random media. Physica A, 185:87–97, 1992.

    Article  Google Scholar 

  21. 21. R. Metzler, W. G. Glockle, and T. F. Nonnemacher. Fractional model equation for anomalous diffusion. Physica A, 211(1):13–24, 1994.

    Article  Google Scholar 

  22. 22. K. H. Hoffmann, C. Essex, and C. Schulzky. Fractional diffusion and entropy production. J. Non-Equilib. Thermodyn., 23(2):166–175, 1998.

    Article  MATH  Google Scholar 

  23. 23. C. Schulzky, C. Essex, M. Davison, A. Franz, and K. H. Hoffmann. The similarity group and anomalous diffusion equations. J. Phys. A: Math. Gen., 33(31):5501–5511, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  24. 24. M. Davison, C. Essex, C. Schulzky, A. Franz, and K. H. Hoffmann. Clouds, fibres and echoes: a new approach to studying random walks on fractals. J. Phys. A: Math. Gen., 34(20):L289–L296, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  25. 25. C. Essex, M. Davison, C. Schulzky, A. Franz, and K. H. Hoffmann. The differential equation describing random walks on the Koch curve. J. Phys. A: Math. Gen., 34(41):8397–8406, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  26. 26. C. Essex, C. Schulzky, A. Franz, and K. H. Hoffmann. Tsallis and Rényi entropies in fractional diffusion and entropy production. Physica A, 284(1–4):299–308, 2000.

    Article  MathSciNet  Google Scholar 

  27. 27. X. Li, C. Essex, M. Davison, K. H. Hoffmann, and C. Schulzky. Fractional diffusion, irreversibility and entropy. J. Non-Equilib. Thermodyn., 28(3):279–291, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Franz, A., Schulzky, C., Ngoc Anh3, D., Seeger, S., Balg, J., Hoffmann, K.H. (2006). Random Walks on Fractals. In: Hoffmann, K.H., Meyer, A. (eds) Parallel Algorithms and Cluster Computing. Lecture Notes in Computational Science and Engineering, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33541-2_17

Download citation

Publish with us

Policies and ethics