Skip to main content

Energy-Level and Wave-Function Statistics in the Anderson Model of Localization

  • Conference paper
Parallel Algorithms and Cluster Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 52))

  • 1441 Accesses

Abstract

Universal aspects of correlations in the spectra and wave functions of closed, complex quantum systems can be described by random-matrix theory (RMT) [1]. On small energy scales, for example, the eigenvalues, eigenfunctions and matrix elements of disordered quantum systems in the metallic regime [2] or those of classically chaotic quantum systems [3] exhibit universal statistical properties very well described by RMT. It is now also well established that deviations from RMT behaviour are often significant at larger energy scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. O. Bohigas. Random matrix theories and chaotic dynamics. In M. J. Gianoni, A. Voros, and J. Zinn-Justin, editors, Chaos and quantum physics, page 87, North-Holland, Amsterdam, 1991.

    Google Scholar 

  2. 2. K. B. Efetov. Supersymmetry and theory of disordered metals. Adv. Phys., 32:53, 1983.

    Article  MathSciNet  Google Scholar 

  3. 3. M. Berry. Some quantum-to-classical asymptotics. In M. J. Giannoni, A. Voros, and J. Zinn-Justin, editors, Chaos and quantum physics, page 251, North- Holland, Amsterdam, 1991.

    Google Scholar 

  4. 4. B. L. Altshuler and B. I. Shklovskii. Repulsion of energy-levels and the conductance of small metallic samples. Sov. Phys. JETP, 64:1, 1986.

    Google Scholar 

  5. 5. A. V. Andreev and B. L. Altshuler. Spectral statistics beyond random-matrix theory. Phys. Rev. Lett., 75:902, 1995.

    Article  MathSciNet  Google Scholar 

  6. 6. N. Argaman, Y. Imry, and U. Smilansky. Semiclassical analysis of spectral correlations in mesoscopic systems. Phys. Rev. B, 47:4440, 1993.

    Article  Google Scholar 

  7. 7. B. Mehlig and M. Wilkinson. Spectral correlations: understanding oscillatory contributions. Phys. Rev. E, 63:045203(R), 2001.

    Google Scholar 

  8. 8. E. Heller. Bound-state eigenfunctions of classically chaotic Hamiltonian-systems - scars of periodic-orbits. Phys. Rev. Lett., 53:1515, 1984.

    Article  MathSciNet  Google Scholar 

  9. 9. K. Müller, B. Mehlig, F. Milde, and M. Schreiber. Statistics of wave functions in disordered and in classically chaotic systems. Phys. Rev. Lett., 78:215, 1997.

    Article  Google Scholar 

  10. 10. A. D. Mirlin. Habilitation thesis. University of Karlsruhe, 1999.

    Google Scholar 

  11. 11. A. D. Mirlin. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep., 326:259, 2000.

    Article  MathSciNet  Google Scholar 

  12. 12. B.L. Altshuler, V. E. Kravtsov, and I. V. Lerner. Distribution of mesoscopic fluctuations and relaxation processes in disordered conductors. In B.L. Altshuler, P. A. Lee, and R. A. Webb, editors, Mesoscopic Phenomena in Solids, page 449, North-Holland, Amsterdam, 1991.

    Google Scholar 

  13. 13. B. L. Altshuler and V. N. Prigodin. Distribution of local density of states and shape of NMR line in a one-dimensional disordered conductor. Sov. Phys. JETP, 68:198, 1989.

    Google Scholar 

  14. 14. A. D. Mirlin and Y. V. Fyodorov. The statistics of eigenvector components of random band matrices - analytical results. J. Phys. A: Math. Gen., 26:L551, 1993.

    Article  MathSciNet  Google Scholar 

  15. 15. Y. V. Fyodorov and A. Mirlin. Statistical properties of eigenfunctions of random quasi 1d one-particle Hamiltonians. Int. J. Mod. Phys. B, 8:3795, 1994.

    Article  Google Scholar 

  16. 16. V. I. Fal'ko and K. B. Efetov. Multifractality: generic property of eigenstates of 2d disordered metals. Europhys. Lett., 32:627, 1995.

    Google Scholar 

  17. 17. Y. V. Fyodorov and A. Mirlin. Mesoscopic fluctuations of eigenfunctions and level-velocity distribution in disordered metals. Phys. Rev. B, 51:13403, 1995.

    Article  Google Scholar 

  18. 18. A. D. Mirlin. Spatial structure of anomalously localized states in disordered conductors. J. Math. Phys., 38:1888, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  19. 19. J. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Birkhäuser, Boston, 1985.

    MATH  Google Scholar 

  20. 20. V. Uski, B. Mehlig, R. Römer, and M. Schreiber. Exact diagonalization study of rare events in disordered conductors. Phys. Rev. B, 62:R7699, 2000.

    Article  Google Scholar 

  21. 21. V. Uski, B. Mehlig, and M. Schreiber. Spatial structure of anomalously localized states in disordered conductors. Phys. Rev. B, 66:233104, 2002.

    Article  Google Scholar 

  22. 22. V. Uski, B. Mehlig, and M. Wilkinson. Unpublished.

    Google Scholar 

  23. 23. M. Wilkinson. Random matrix theory in semiclassical quantum mechanics of chaotic systems. J. Phys. A: Math. Gen., 21:1173, 1988.

    Article  MathSciNet  Google Scholar 

  24. 24. M. Wilkinson and P. N. Walker. A Brownian motion model for the parameter dependence of matrix elements. J. Phys. A: Math. Gen., 28:6143, 1996.

    Article  MathSciNet  Google Scholar 

  25. 25. V. Uski, B. Mehlig, R. Römer, and M. Schreiber. Smoothed universal correlations in the two-dimensional Anderson model. Phys. Rev. B, 59:4080, 1999.

    Article  Google Scholar 

  26. 26. P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492, 1958.

    Article  Google Scholar 

  27. 27. M. L. Mehta. Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York, 1991.

    Google Scholar 

  28. 28. W. T. Vetterling W. H. Press, S. A. Teukolsky and B. P. Flannery. Numerical recipes. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  29. 29. C. E. Porter. Fluctuations of quantal spectra. In C. E. Porter, editor, Statistical Theories of Spectra, page 2. Academic Press, New York, 1965.

    Google Scholar 

  30. 30. N. G. van Kampen. Stochastic processes in physics and chemistry. North- Holland, Amsterdam, 1983.

    Google Scholar 

  31. 31. V. M. Apalkov, M. E. Raikh, and B. Shapiro. Anomalously localized states in the Anderson model. Phys. Rev. Lett., 92:066601, 2004.

    Article  Google Scholar 

  32. 32. V. Uski, B. Mehlig, R.A. Römer, and M. Schreiber. Incipient localization in the Anderson model. Physica B, 284–288:1934, 2000.

    Article  Google Scholar 

  33. 33. B. K. Nikolic. Statistical properties of eigenstates in three-dimensional mesoscopic systems with or diagonal or diagonal disorder. Phys. Rev. B, 64:014203, 2001.

    Article  Google Scholar 

  34. 34. B. K. Nikolic. Quest for rare events in mesoscopic disordered metals. Phys. Rev. B, 65:012201, 2002.

    Article  Google Scholar 

  35. 35. V. Uski, R. A. Römer, and M. Schreiber. Numerical study of eigenvector statistics for random banded matrices. Phys. Rev. E, 65:056204, 2002.

    Article  Google Scholar 

  36. 36. V. Uski, B. Mehlig, and M. Schreiber. Signature of ballistic effects in disordered conductors. Phys. Rev. B, 63:241101, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Mehlig, B., Schreiber, M. (2006). Energy-Level and Wave-Function Statistics in the Anderson Model of Localization. In: Hoffmann, K.H., Meyer, A. (eds) Parallel Algorithms and Cluster Computing. Lecture Notes in Computational Science and Engineering, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33541-2_14

Download citation

Publish with us

Policies and ethics