Skip to main content

Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi

  • Chapter
Microbial Root Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul Karim N (2005) Molecular and enzymic groupings of fungi from tropical orchids of Western Australia and their patterns of tissue colonisation. PhD Thesis. The University of Western Australia

    Google Scholar 

  • Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic fungi in nonectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270

    Article  Google Scholar 

  • Allen MF, Allen EB, Friese CF (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111:45–49

    Article  Google Scholar 

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  • Azcón-Aguilar C, Bago B, Barea JM (1999) Saprophytic growth of arbuscular mycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza, structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 391–408

    Google Scholar 

  • Batty AJ, Dixon KW, Brundrett MC, Sivasithamparam K (2002) Orchid conservation and mycorrhizal associations. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in plant conservation and biodiversity. Kluwer, The Netherlands, pp 195–226

    Google Scholar 

  • Bayman P, Gonzalez EJ, Fumero, JJ, Tremblay RL (2002) Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. J Ecol 90:1002–1008

    Article  CAS  Google Scholar 

  • Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649

    Article  PubMed  CAS  Google Scholar 

  • Bergero R, Girlanda M, Bello F, Luppi AM, Perotto S (2003) Soil Persistence and biodiversity of ericoid mycorrhizal fungi in the absence of the host plant in a Mediterranean ecosystem. Mycorrhiza 13:69–75

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc London B 271:1799–1806

    Article  CAS  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Brundrett MC, Kendrick WB (1988) The mycorrhizal status, root anatomy, and phenology of plants in a sugar maple forest. Can J Bot 66:1153–1173

    Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1994) Variations in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739

    Article  Google Scholar 

  • Cázares E, Trappe JM (1993) Vesicular endophytes in roots of the Pinaceae. Mycorrhiza 2:153–56

    Article  Google Scholar 

  • Chambers SM, Williams PG, Seppelt RD, Cairney JWG (1999) Molecular identification of Hymenoscyphus sp. from rhizoids of the leafy liverwort Cephaloziella exiliflora in Australia and Antarctica. Mycol Res 103:286–288

    Article  CAS  Google Scholar 

  • Chen YL, Dell B, Brundrett MC (2000) Effects of ectomycorrhizas and vesicular-arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–556

    Article  Google Scholar 

  • Chilvers GA, Gust LW (1982) Comparison between the growth rates of mycorrhizas, uninfected roots and a mycorrhizal fungus of Eucalyptus st-johnii R. T. Bak. New Phytol 91:453–66

    Article  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microb Interact 11:1017–1028

    CAS  Google Scholar 

  • Cornwell WK, Bedford BL, Chapin CT (2001) Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal responses to phosphorus fertilization. Am J Bot 88:1824–1829

    Article  Google Scholar 

  • Currah RS, Zelmer CD, Hambleton S, Richardson KA(1997) Fungi from orchid mycorrhizas. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives, VII. Kluwer, Dordrecht, pp 117–170

    Google Scholar 

  • Dahlstrom JL, Smith JE, Weber NS (2000) Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis. Mycorrhiza 9:279–285

    Article  Google Scholar 

  • Demchenko K, Winzer T, Stougaard J, Parniske M, Pawlowski K (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonisation and arbuscular formation. New Phytol 163:381–392

    Article  CAS  Google Scholar 

  • Duckett JG, Read DJ (1995) Ericoid mycorrhizas and rhizoid-ascomycete associations in liverworts share the same mycobiont: isolation of the partners and resynthesis of the associations in vitro. New Phytol 129:439–447

    Article  Google Scholar 

  • Eason WR, Newman EI, Chuba PN (1991) Specificity of interplant cycling of phosphorus: the role of mycorrhizas. Plant Soil 137:267–274

    Article  CAS  Google Scholar 

  • Gill WM, Lapeyrie F, Gomi T, Suzuki K (1999) Tricholoma matsutake — an assessment of in situ and in vitro infection by observing cleared and stained roots. Mycorrhiza 9:227–231

    Article  Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130

    Article  Google Scholar 

  • Glen M, Tommerup IC, Bougher NL, O’Brien PA (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests. Mycorrhiza 12:243–247

    Article  PubMed  CAS  Google Scholar 

  • Hall IR (1976) Vesicular mycorrhizas in the orchid Corybas macranthus. Trans Br Mycol Soc 66:160

    Article  Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105[Suppl 2]:1–102

    Article  Google Scholar 

  • Harney SK, Rogers SO, Wang CJK (1997) Molecular characterization of dematiaceous root endophytes. Mycol Res 101:1397–1404

    Article  CAS  Google Scholar 

  • Harrington TJ, Mitchell DT (2002) Colonization of root systems of Carex flacca and C. pilulifera by Cortinarius (Dermocybe) cinnamomeus. Mycol Res 106:452–459

    Article  CAS  Google Scholar 

  • Hashimoto Y, Hyakumachi M (2000) Quantities and types of ectomycorrhizal and endophytic fungi associated with Betula platyphylla var. japonica seedlings during the initial stage of establishment of vegetation after disturbance. Ecol Res 15:21–31

    Article  Google Scholar 

  • Hashimoto Y, Hyakumachi M (2001) Effects of isolates of ectomycorrhizal fungi and endophytic Mycelium radicis atrovirens that were dominant in soil from disturbed sites on growth of Betula platyphylla var. japonica seedlings. Ecol Res 16:117–125

    Article  Google Scholar 

  • Imhof S (2001) Subterranean structures and mycotrophy of the achlorophyllous Dictyostega orobanchoides (Burmanniaceae). Rev Biol Trop 49:239–247

    PubMed  CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphate activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 9:1153–1159

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kõljalg U, Dahlberg A, Taylor AFS, Larsson E, Hallenberg N, Stenlid J, Larsson K-H, Fransson PM, Kårén O, Jonsson L (2000) Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Mol Ecol 9:1985–1996

    Article  PubMed  Google Scholar 

  • Koske RE (1984) Spores of VAM fungi inside spores of VAM fungi. Mycologia 76:853–862

    Article  Google Scholar 

  • Koske RE, Gemma JN, Englander L (1990) Vesicular-arbuscular mycorrhizae in Hawaiian Ericales. Am J Bot 77:64–68

    Article  Google Scholar 

  • Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Kristiansen KA, Taylor DL, Kjøller R, Rasmussen HN, Rosendahl S (2001) Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Mol Ecol 10:2089–2093

    Article  PubMed  CAS  Google Scholar 

  • Kuldau GA, Yates IE (2000) Evidence for Fusariumendophytes in cultivated and wild plants. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Decker, New York, pp 85–117

    Google Scholar 

  • Malajczuk N, Dell B, Bougher NL (1987) Ectomycorrhiza formation in Eucalyptus III. Superficial ectomycorrhizas initiated by Hysterangium and Cortinarius species. New Phytol 105:421–428

    Article  Google Scholar 

  • McKormick MK, Whigham DF, O’Neill (2004) Mycorrhizal diversity of photosynthetic terrestrial orchids. New Phytol 163:425–438

    Article  Google Scholar 

  • McLean CB, Cunnington JH, Lawrie AC (1999) Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytol 144:351–358

    Article  CAS  Google Scholar 

  • Monreal M, Berch SM, Berbee M (1999) Molecular diversity of ericoid mycorrhizal fungi. Can J Bot 77:1580–1594

    Article  CAS  Google Scholar 

  • Muthukumar T, Udaiyan K, Karthikeyan A, Manian S (1997) Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agric Ecosyst Environ 61:51–58

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges — an overview. Mycorrhiza 14:65–77

    Article  PubMed  CAS  Google Scholar 

  • Mursidawati S (2003) Mycorrhizal association, propagation and conservation of the mycoheterotrophic orchid Rhizanthella gardneri. MSc. Thesis, The University of Western Australia

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Article  Google Scholar 

  • Ocampo JA (1986) Vesicular-arbuscular mycorrhizal infection of “host” and “non-host” plants: effect on the growth responses of the plants and competition between them. Soil Biol Biochem 18:607–610

    Article  Google Scholar 

  • O’Dell T, Trappe JM (1992) Root endophytes of lupin and some other legumes of Northwestern U.S.A. New Phytol 122:479–485

    Article  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    CAS  Google Scholar 

  • Pamphile JA, Azevedo JL (2002) Molecular characterization of endophytic strains of Fusarium verticillioides (= Fusarium moniliforme) frommaize (Zea mays L). World J Microbiol Biotechnol 18:391–396

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Piercey MM, Thormann MN, Currah RS (2002) Saprobic characteristics of three fungal taxa fromericalean roots and their associations with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12:175–180

    Article  PubMed  CAS  Google Scholar 

  • Plattner I, Hall IR (1995) Parasitism of non-host plants by the mycorrhizal fungus Tuber melanosporum. Mycol Res 99:1367–1370

    Google Scholar 

  • Powell CL (1975) Rushes and sedges are non-mycotrophic. Plant Soil 42:481–484

    Article  Google Scholar 

  • Rabatin SC, Rhodes LH (1982) Acaulospora bireticulata inside orbatid mites. Mycologia 74:859–861

    Article  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716

    Article  Google Scholar 

  • Richardson KA, Currah RS (1995) The fungal community associated with the roots of some rainforest epiphytes of Costa Rica. Selbyana 16:49–73

    Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Sakakibara SM, Jones MD, Gillespie M, Hagerman SM, Forrest ME, Simard SW, Durall DM (2002) A comparison of ectomycorrhiza identification based on morphotyping and PCR-RFLP analysis. Mycol Res 106:868–878

    Article  CAS  Google Scholar 

  • Selosse MA, Bauer R, Moyersoen B (2002a) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195

    Article  CAS  Google Scholar 

  • Selosse M-A, Weiss M, Jany J-L, Tillier A (2002b) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  PubMed  CAS  Google Scholar 

  • Sen R, Hietala AM, Zelmer CD (1999) Common anastomosis and internal transcribed spacer RFLP groupings in binucleate Rhizoctonia isolates representing root endophytes of Pinus sylvestris, Ceratorhiza spp. from orchid mycorrhizas and a phytopathogenic anastomosis group. New Phytol 144:331–341

    Article  CAS  Google Scholar 

  • Sharples JM, Chambers SM, Meharg AA, Cairney JWG (2000) Genetic diversity of rootassociated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162

    Article  CAS  Google Scholar 

  • Sivasithamparam K (1998) Root cortex — the final frontier for biocontrol of root-rot with fungal antagonists: a case study on a sterile red fungus. Annu Rev Phytopathol 36:439–452

    Article  PubMed  CAS  Google Scholar 

  • Smith JE, Johnson KA, Cázares E (1998) Vesicular mycorrhizal colonisation of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza 7:279–285

    Article  Google Scholar 

  • St John TV, Coleman DC, Reid CPP (1983) Growth and spatial distribution of nutrientabsorbing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487–493

    Article  Google Scholar 

  • Stoyke G, Currah RS (1991) Endophytic fungi fromthemycorrhizae of alpine ericoid plants. Can J Bot 69:347–352

    Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: Van der Heijden MGA, Sanders IR (eds) The ecology of mycorrhizas. Springer, Berlin Heidelberg New York, pp 375–414

    Google Scholar 

  • Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431

    Article  Google Scholar 

  • Urban A, Weiss M, Bauer R (2003) Ectomycorrhizas involving sebacinoidmycobionts. Mycol Res 107:3–14

    Article  PubMed  Google Scholar 

  • Van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193

    Article  Google Scholar 

  • Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata — the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563

    Article  Google Scholar 

  • Vrålstad T, Schumacher T, Taylor FS (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143–152

    Article  Google Scholar 

  • Vujanovic V, St-Arnaud M, Barabé D, Thibeaults G (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86:79–86

    Article  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–38

    Article  Google Scholar 

  • Warcup JH (1985) Rhizanthella gardneri (Orchidaceae), its Rhizoctonia endophyte and close association with Melaleuca uncinata (Myrtaceae) in Western Australia. New Phytol 99:273–280

    Article  Google Scholar 

  • Warner A (1984) Colonisation of organic matter by mycorrhizal fungi. Trans Br Mycol Soc 82:352–354

    Article  Google Scholar 

  • Yu TEJ-C, Egger KN, Peterson RL (2001) Ectendomycorrhizal associations — characteristics and functions. Mycorrhiza 11:167–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brundrett, M.C. (2006). Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (eds) Microbial Root Endophytes. Soil Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_16

Download citation

Publish with us

Policies and ethics