A Comparison of Clonal Selection Based Algorithms for Non-Stationary Optimisation Tasks

  • Krzysztof Trojanowski
  • Sławomir T. Wierzchoń
Part of the Advances in Soft Computing book series (AINSC, volume 35)


Mammalian immune system and especially clonal selection principle, responsible for coping with external intruders, is an inspiration for a set of heuristic optimization algorithms. Below, a few of them are compared on a set of nonstationary optimization benchmarks. One of the algorithms is our proposal, called AIIA (Artificial Immune Iterated Algorithm). We compare two versions of this algorithm with two other well known algorithms. The results show that all the algorithms based on clonal selection principle can be quite efficient tools for nonstationary optimization.


Clonal Selection Main Loop Somatic Hypermutation Immune Algorithm Clonal Selection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. Branke, J. The Moving Peaks Benchmark, URL: http://www.aifb. Scholar
  2. 2.
    2. Branke, J. (1999) Memory enhanced evolutionary algorithm for changing optimization problems, in [13], pp. 1875–1882Google Scholar
  3. 3.
    3. Cobb, H. G., Grefenstette, J.J. (1993) Genetic algorithms for tracking changing environments, Proc. of the 5th IEEE International Conference on Genetic Algorithms — V ICGA'93, Morgan Kauffman, pp. 523–530Google Scholar
  4. 4.
    4. Cutello, V., Nicosia, G., Pavia, E. (2006) A Parallel Immune Algorithm for Global Optimization, M. A. Kłopotek, S. T. Wierzchoń, K. Trojanowski (Eds.), IIS 2006: Intelligent Information Processing and Web Mining, Advances in Soft Computing, Springer-VerlagGoogle Scholar
  5. 5.
    5. de Castro, L. N., Timmis, J. (2002) Artificial Immune Systems: A New Computational Intelligence Approach, Springer VerlagGoogle Scholar
  6. 6.
    6. Gaspar, A., Collard, Ph. (1999) From GAs to Arti.cial Immune Systems: Improving adaptation in time dependent optimisation, in [13], pp. 1859–1866Google Scholar
  7. 7.
    7. Kelsey J., Timmis J. (2003) Immune inspired somatic contiguous hypermutation for function optimisation, Genetic and Evolutionary Computation Conference — GECCO 2003, LNCS 2723, Springer Verlag, pp. 207–218Google Scholar
  8. 8.
    8. Morrison R. W., De Jong K. A. (1999) A test problem generator for nonstationary environments, in [13], pp. 1859–1866Google Scholar
  9. 9.
    9. Trojanowski, K., Michalewicz, Z., (1999) Searching for optima in non-stationary environments, in [13], pp. 1843–1850Google Scholar
  10. 10.
    10. Trojanowski, K., Wierzchoń, S. T. (2003) Studying properties of multipopulation heuristic approach to non-stationary optimisation tasks, M. A. Kłopotek, S. T. Wierzchoń, K. Trojanowski (Eds.), IIS 2003: Intelligent Information Processing and Web Mining, Advances in Soft Computing, Springer Verlag, pp 23–32Google Scholar
  11. 11.
    11. Trojanowski, K., Wierzchoń, S. T., Ś widerski, Z. (2005) Arti.cial immune iterated algorithm for non-stationary optimization tasks, M. Draminski, P. Grzegorzewski, K. Trojanowski, S. Zadrozny (Eds.): Issues in Intelligent Information Systems. Models and Techniques, EXIT, WarszawaGoogle Scholar
  12. 12.
    12. Wierzchoń, S.T. (2002) Function optimization by the immune metaphor. Task Quarterly, vol. 6, no. 3, 493–508Google Scholar
  13. 13.
    13. Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (Eds.) (1999), Proc. of the 1999 Congress on Evolutionary Computation — CEC'99, vol. 3, IEEE PressGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Krzysztof Trojanowski
    • 1
  • Sławomir T. Wierzchoń
    • 1
    • 2
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarszawaPoland
  2. 2.Dep. of Computer ScienceBiałystok Technical UniversityBiałystokPoland

Personalised recommendations