Tableau Method with Free Variables for Intuitionistic Logic

  • Boris Konev
  • Alexander Lyaletski
Part of the Advances in Soft Computing book series (AINSC, volume 35)


In this paper, we address proof search in tableaux with free variables for intuitionistic logic by introducing the notion of an admissible substitution into a quantifier-free calculus. Admissibility of a substitution is determined by the quanti fier structure of given formulae and by dependencies between variables in the substitution. With this notion of admissibility, we avoid the need for both Skolemisation and checking different possible orders of quantifier rule applications. We demonstrate our approach on a series of examples.


Free Variable Proof System Inference Tree Atomic Formula Intuitionistic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. B. Beckert. Depth-.rst proof search without backtracking for free-variable clausal tableaux. Journal of Symbolic Computation, 36:117–138, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    2. K. Broda. The relationship between semantic tableau and resolution theorem proving. In Proc. of Workshop on Logic, Debrecen, Hungary, 1980.Google Scholar
  3. 3.
    3. D. Gabbay. Labelled deductive systems. Oxford university press, 1996.Google Scholar
  4. 4.
    4. M. Giese. Incremental closure of free variable tableaux. In Proc. IJCAR'01, vol. 2083 of LNCS, pp. 545–560, 2001.MathSciNetGoogle Scholar
  5. 5.
    5. R. Hähnle. Tableaux and related methods. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol. I, chapter 3, pp. 101–178. Elsevier, 2001.Google Scholar
  6. 6.
    6. B. Konev and T. Jebelean. Solution lifting method for handling metavariables in the THEOREMA system. Zapiski Nauchnykh Seminarov POMI, 293:94–117, 2002. English translation: Journal of Mathematical Sciences, Springer/Kluwer/Plenum, to appear.Google Scholar
  7. 7.
    7. C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-classical logics. J. UCS, 5(3):88–112, 1999.zbMATHMathSciNetGoogle Scholar
  8. 8.
    8. A. Lyaletski, K. Vershinin, A. Degtyarev, and A. Paskevich. System for automated deduction (SAD): Linguistic and deductive peculiarities. In Proc. of Intelligent Information Systems 2002, Advances in Soft Computing, pp. 413– 422. Physica/Springer Verlag, 2002.Google Scholar
  9. 9.
    9. A. V. Lyaletski. Gentzen calculi and admissible substitutions. In Actes Preliminaieres, du Symposium Franco-Sovietique “Informatika-91”, pp. 99–111, Grenoble, France, 1991.Google Scholar
  10. 10.
    10. G. Mints. Resolution strategies for the intuitionistic logic. In Constraint Programming, pp. 289–311. Springer, Berlin, Heidelberg, 1994.Google Scholar
  11. 11.
    11. J. Otten. ileanTAP: An intuitionistic theorem prover. In Proc. TABLEAUX'97, vol. 1227 of LNCS, pp. 307–312, 1997.Google Scholar
  12. 12.
    12. J. Otten and C. Kreitz. A connection based proof method for intuitionistic logic. In Proc. TABLEAUX'95, vol. 918 of LNCS, pp. 122–137, 1995.Google Scholar
  13. 13.
    13. J. Otten and C. Kreitz. A uniform proof procedure for classical and nonclassical logics. In KI-96, vol. 1137 of LNCS, pp. 307–319, 1996.Google Scholar
  14. 14.
    14. S. Reeves. Semantic tableaux as framework for automated theorem-proving. In C. S. Mellish and J. Hallam, editors, Proc. AISB-87, pp. 125–139, 1987.Google Scholar
  15. 15.
    15. J. A. Robinson. A machine oriented logic based on the resolution principle. J. Assoc. Comput. Mach, 12:23–41, 1965.zbMATHMathSciNetGoogle Scholar
  16. 16.
    16. S. Schmitt and C. Kreitz. Deleting redundancy in proof reconstruction. In Proc. TABLEAUX'98, vol. 1397 of LNCS, pp. 262–276, 1998.Google Scholar
  17. 17.
    17. A. Shankar. Proof search in the intuitionistic sequent calculus. In Proc. CADE'92, vol. 607 of LNCS, pp. 522–536, 1992.Google Scholar
  18. 18.
    18. T. Tammet. A resolution theorem prover for intuitionistic logic. In Proc. CADE-13, vol. 1104 of LNCS, pp. 2–16, 1996.Google Scholar
  19. 19.
    19. A. Voronkov. Proof search in intuitionistic logic based on constraint satisfaction. In Proc. TABLEAUX'96, vol. 1071 of LNCS, pp. 312–329, 1996.Google Scholar
  20. 20.
    20. A. Waaler and L. Wallen. Tableaux for intuitionistic logics. In M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pp. 255–296. Kluwer, Dordrecht, 1999.Google Scholar
  21. 21.
    21. L. Wallen. Automated Deduction in Nonclassical Logics. MIT Press: Cambridge, 1990.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Boris Konev
    • 1
  • Alexander Lyaletski
    • 2
  1. 1.Department of Computer ScienceThe University of LiverpoolUnited Kingdom
  2. 2.Faculty of CyberneticsKiev National Taras Shevchenko UniversityUkraine

Personalised recommendations