Advertisement

Collective Behaviour of Cellular Automata Rules and Symmetric Key Cryptography

  • Miroslaw Szaban
  • Franciszek Seredy nski
  • Pascal Bouvry
Part of the Advances in Soft Computing book series (AINSC, volume 35)

Abstract

Cellular automata (CA) is applied in cryptographic systems. Genetic algorithm (GA) is used to search among predefined set of rules new subsets of rules controlling CA. A high quality pseudorandom numbers sequences (PNSs) are generated by CA applying new subsets of rules. Discovered subset create very efficient cryptographic module used as pseudorandom numbers sequences generator (PNSG). The bad subsets of rules are also discovered and eliminated.

Keywords

Cellular Automaton Cellular Automaton Collective Behaviour Stream Cipher Elite Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Bouvry P., Klein G. and Seredynski F. (2005) Weak Key Analysis and Microcontroller Implementation of CA Stream Ciphers, LNAI 3684, Springer, pp. 910-915Google Scholar
  2. 2.
    2. Guan P. (1987) Cellular Automaton Public-Key Cryptosystem, Complex Systems 1, pp. 51–56zbMATHMathSciNetGoogle Scholar
  3. 3.
    3. Gutowitz H. (1993) Cryptography with Dynamical Systems, in E. Goles and N. Boccara (Eds.) Cellular Automata and Cooperative Phenomena, Kluwer Academic PressGoogle Scholar
  4. 4.
    4. Habutsu T. et al. (1991) A Secret Key Cryptosystem by Iterating a Chaotic Map, Proc. of Eurocrypt'91, pp. 127–140Google Scholar
  5. 5.
    5. Kari J. (1992) Cryptosystems based on reversible cellular automata, Personal Communication.Google Scholar
  6. 6.
    6. Menezes A. et al. (1996) Handbook of Applied Cryptography, CRC PressGoogle Scholar
  7. 7.
    7. Michalewicz Z. (1994) Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New YorkzbMATHGoogle Scholar
  8. 8.
    8. Nandi S. et al. (1994) Theory and Applications of Cellular Automata in Cryptography, IEEE Trans. on Computers, v. 43, pp. 1346–1357CrossRefMathSciNetGoogle Scholar
  9. 9.
    9. Schneier B. (1996) Applied Cryptography, Wiley, New YorkGoogle Scholar
  10. 10.
    10. Seredynski F., Bouvry P. and Zomaya A. (2004), Cellular Automata Computation and Secret Key Cryptography, Parallel Computation 30, pp. 753–766Google Scholar
  11. 11.
    11. Tomassini M. and Perrenoud M. (2000) Stream Ciphers with One- and Two- Dimensional Cellular Automata, in M. Schoenauer at al. (Eds.) Parallel Problem Solving from Nature - PPSN VI, LNCS 1917, Springer, pp. 722-731Google Scholar
  12. 12.
    12. Tomassini M. and SipperM. (2000) On the Generation of High-Quality Random Numbers by Two-Dimensional Cellular Automata, IEEE Trans. on Computers, v. 49, No. 10, pp. 1140–1151Google Scholar
  13. 13.
    13. Wolfram S. (1986) Cryptography with Cellular Automata, in Advances in Cryptology: Crypto '85 Proceedings, LNCS 218, Springer, pp. 429–432Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Miroslaw Szaban
    • 1
  • Franciszek Seredy nski
    • 1
    • 2
    • 3
  • Pascal Bouvry
    • 4
  1. 1.Computer Science DepartmentThe University of PodlasieSiedlcePoland
  2. 2.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  3. 3.Polish-Japanese Institute of Information TechnologiesWarsawPoland
  4. 4.Faculty of SciencesTechnology and Communication Luxembourg UniversityLuxembourg-KirchbergLuxembourg

Personalised recommendations