Advertisement

Faster Frequent Pattern Mining from the Semantic Web

  • Joanna Józefowska
  • Agnieszka Ławrynowicz
  • Tomasz Łukaszewski
Part of the Advances in Soft Computing book series (AINSC, volume 35)

Abstract

In this paper we propose a method for frequent pattern discovery from the knowledge bases represented in OWL DLP. OWL DLP, known also as Description Logic Programs, is the intersection of the expressivity of OWL DL and Logic Programming. Our method is based on a special form of a trie data structure. A similar structure was used for frequent pattern discovery in classical and relational data mining settings giving significant gain in efficiency. Our approach is illustrated on the example ontology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Berners-Lee T., Hendler J., and Lassila O. (2001) The Semantic Web. Scienti.c American, 284(5):34–43Google Scholar
  2. 2.
    2. Dehaspe, L., Toivonen, H. (1999) Discovery of frequent Datalog patterns. Data Mining and Knowledge Discovery, 3(1): 7–36CrossRefGoogle Scholar
  3. 3.
    3. Donini, F., Lenzerini, M., Nardi, D., Schaerf, A. (1998) AL-log: Integrating datalog and description logics, Journal of Intelligent Information Systems, 10:3, 227–252CrossRefGoogle Scholar
  4. 4.
    4. Dzeroski S., Lavrac N., (Eds.) (2001) Relational data mining. SpringerGoogle Scholar
  5. 5.
    5. Grosof B. N., Horrocks I., Volz R., Decker S. (2003) Description Logic Programs: Combining Logic Programs with Description Logic. In Proc. of the Twelfth Int'l World Wide Web Conf. (WWW 2003), 48-57. ACMGoogle Scholar
  6. 6.
    6. Hitzler P., Studer R., Sure Y. (2005) Description Logic Programs: A Practical Choice For the Modelling of Ontologies. In Proc. of the 1st Workshop on Formal Ontologies meet Meet Industry, FOMI'05, Verona, ItalyGoogle Scholar
  7. 7.
    7. Jözefowska J., _Lawrynowicz A., _Lukaszewski T. (2005) Towards discovery of frequent patterns in description logics with rules, Proc. of the International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML- 2005), Galway, Ireland, LNCS, Springer-Verlag, 84–97Google Scholar
  8. 8.
    8. Lisi F.A., Malerba D. (2004) Inducing Multi-Level Association Rules from Multiple Relation, Machine Learning Journal, 55, 175–210zbMATHCrossRefGoogle Scholar
  9. 9.
    9. Motik B., Sattler U., Studer R. (2004) Query Answering for OWL-DL with Rules. Proc. of the 3rd International Semantic Web Conference (ISWC 2004), Hiroshima, Japan, pp. 549–563Google Scholar
  10. 10.
    10. Nienhuys-Cheng, S., de Wolf, R. (1997) Foundations of inductive logic programming, vol. 1228 of LNAI. SpringerGoogle Scholar
  11. 11.
    11. Nijssen, S., Kok, J.N. (2001) Faster Association Rules for Multiple Relations. Proceedings of the IJCAI'01, 891-897Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Joanna Józefowska
    • 1
  • Agnieszka Ławrynowicz
    • 1
  • Tomasz Łukaszewski
    • 1
  1. 1.Institute of Computing SciencePoznan University of TechnologyPoznanPoland

Personalised recommendations