Adaptive Document Maps

  • Krzysztof Ciesielski
  • Michał Dramiński
  • Mieczysław A. Kłopotek
  • Dariusz Czerski
  • Sławomir T. Wierzchoń
Part of the Advances in Soft Computing book series (AINSC, volume 35)


As document map creation algorithms like WebSOM are computationally expensive, and hardly reconstructible even from the same set of documents, new methodology is urgently needed to allow to construct document maps to handle streams of new documents entering document collection. This challenge is dealt with within this paper. In a multi-stage process, incrementality of a document map is warranted.1 The quality of map generation process has been investigated based on a number of clustering and classification measures. Conclusions concerning the impact of incremental, topic-sensitive approach on map quality are drawn.


Contextual Model Normalize Mutual Information Incremental Learning Document Cluster Incremental Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. CC Aggarwal, F Al-Garawi, and PS Yu. Intelligent crawling on theWorld Wide Web with arbitrary predicates. In Proc. 10th International World Wide Web Conference, pages 96–105, 2001.Google Scholar
  2. 2.
    2. M.W.Berry, Large scale singular value decompositions, International Journal of Supercomputer Applications, 6(1), 1992, pp.13–49MathSciNetGoogle Scholar
  3. 3.
    3. L.N. De Castro, F.J. von Zuben, An evolutionary immune network for data clustering, SBRN′2000, IEEE Computer Society Press, 2000Google Scholar
  4. 4.
    4. M. Dittenbach, A. Rauber, D. Merkl, Discovering Hierarchical Structure in Data Using the Growing Hierarchical Self-Organizing Map, Neurocomputing, Elsevier, ISSN 0925–2312, 48 (1–4) 2002, pp. 199–216zbMATHCrossRefGoogle Scholar
  5. 5.
    5. B. Fritzke, Some competitive learning methods, draft available from gsn/JavaPaperGoogle Scholar
  6. 6.
    6. B. Fritzke, A growing neural gas network learns topologies, in: G. Tesauro, D.S. Touretzky, and T.K. Leen (Eds.) Advances in Neural Information Processing Systems 7, MIT Press Cambridge, MA, 1995, pp. 625–632Google Scholar
  7. 7.
    7. B. Fritzke, A self-organizing network that can follow non-stationary distributions, in: Proceedings of the International Conference on Artificial Neural Net works ′97, Springer, 1997, pp. 613–618Google Scholar
  8. 8.
    8. C. Hung, S.Wermter, A Constructive and Hierarchical Self-Organising Model in A Non-Stationary Environment, International Joint Conference in Neural Networks, 2005Google Scholar
  9. 9.
    9. M. Kłopotek, M. Dramiński, K. Ciesielski, M. Kujawiak, S.T. Wierzchoń, Mining document maps, in Proceedings of Statistical Approaches toWeb Mining Workshop (SAWM) at PKDD′04, M. Gori, M. Celi, M. Nanni eds., Pisa, 2004, 87–98Google Scholar
  10. 10.
    10. K. Ciesielski, M. Dramiński, M. Kłopotek, M. Kujawiak, S. Wierzchoń: Architecture for graphical maps of Web contents, in Proc.WISIS′2004, Warsaw, 2004Google Scholar
  11. 11.
    11. K. Ciesielski, M. Dramiński, M. Kłopotek, M. Kujawiak, S. Wierzchoń: Mapping document collections in non-standard geometries. B. De Beats, R. De Caluwe, G. de Tre, J. Fodor, J. Kacprzyk, S. Zadroÿzny (eds): Current Issues in Data and Knowledge Engineering. Akademicka Warszawa, 2004, pp.122–132Google Scholar
  12. 12.
    12. K. Ciesielski, M. Dramiński, M. Kłopotek, M. Kujawiak, S.T. Wierzchoń, On some clustering algorithms for Document Maps Creation, to appear in: Proceedings of the Intelligent Information Processing and Web Mining (IIS:IIPWM- 2005), Gdansk, 2005Google Scholar
  13. 13.
    13. M. Kłopotek, S. Wierzchoń, K. Ciesielski, M. Dramiński, D. Czerski, M. Kujawiak: Understanding Nature of Map Representation of Document Collections Map Quality Measurements, to appear in Proceeding of International Conference on Artificial Intelligence, Siedlce, September 2005Google Scholar
  14. 14.
    14. M. Kłopotek: A New Bayesian Tree Learning Method with Reduced Time and Space Complexity, Fundamenta Informaticae, 49(4)2002, IOS Press, 349–367MathSciNetGoogle Scholar
  15. 15.
    15. T. Kohonen, Self-Organizing Maps. Springer Series in Information Sciences, Vol. 30, Springer, Berlin, Heidelberg, New York, 2001. Third Extended Edition, 501 pages. ISBN 3-540-67921-9, ISSN 0720-678XGoogle Scholar
  16. 16.
    16. B. C., K. Livesay, and K. Lund. Explorations in context space: Words, sentences, discourse Discourse Processes, 25(2-3):211–257, 1998Google Scholar
  17. 17.
    17. A. Rauber, Cluster Visualization in Unsupervised Neural Networks, Diplomarbeit, Technische Universitt Wien, Austria, 1996Google Scholar
  18. 18.
    18. J. Timmis, aiVIS: Artificial ImmuneNetwork Visualization, in: Proceedings of EuroGraphics UK 2001 Conference, Univeristy College London 2001, pp.61–69Google Scholar
  19. 19.
    19. T. Zhang, R. Ramakrishan, M. Livny, BIRCH: E.cient Data Clustering Method for Large Databases, in: Proceedings of ACM SIGMOD International Conference on Data Management, 1997Google Scholar
  20. 20.
    20. Y. Zhao, G. Karypis, Criterion functions for document Clustering: Experiments and analysis, available at URL: publications/ir.htmlGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Krzysztof Ciesielski
    • 1
  • Michał Dramiński
    • 1
  • Mieczysław A. Kłopotek
    • 1
  • Dariusz Czerski
    • 1
  • Sławomir T. Wierzchoń
    • 1
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarszawaPoland

Personalised recommendations