Skip to main content

Computational Grammatical Inference

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 194))

Abstract

Grammatical Inference (GI) concentrates on finding compact representations, i.e. grammars, of possibly infinite sets of sentences. These grammars describe what sentences do or do not belong to a particular language. The process of learning the form of a grammar based on example sentences from the language touches several fields. Here, we give an overview of the field of GI as well as fields that are closely related. We discuss linguistic, empirical, and formal grammatical inference and discuss the work that falls in the areas where these fields overlap.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriaans, W. P. (1992). Language Learning from a Categorial Perspective. PhD thesis, Universiteit van Amsterdam.

    Google Scholar 

  • Adriaans, P. (2001). Learning shallow context-free languages under simple distributions. In Copestake, A. and Vermeulen, K., editors, Algebras, Diagrams and Decisions in Language, Logic and Computation. CSLI/CUP, Stanford:CA, USA.

    Google Scholar 

  • Adriaans, P. and Vervoort, M. (2002). The EMILE 4.1 grammar induction toolbox. In Adriaans, P., Fernau, H. and van Zaanen, M., editors, Grammatical Inference: Algorithms and Applications; 6thInternational Colloquium, ICGI 2002, volume 2484 of LNCS/LNAI, pages 293–295. Springer-Verlag, Berlin Heidelberg, Germany.

    Google Scholar 

  • Angluin, D. (1980). Inductive inference of formal languages from positive data. Information and Control, 45:117–135.

    Article  MATH  MathSciNet  Google Scholar 

  • Angluin, D. (1982). Inference of reversible languages. Journal of the Association for Computing Machinery, 29(3):741–765.

    MATH  MathSciNet  Google Scholar 

  • Angluin, D. (1987). Learning k-bounded context-free grammars. Technical Report YALEU/DCS/TR-557, Yale University.

    Google Scholar 

  • Angluin, D. (1988). Queries and concept learning. Machine Learning, 2:319–342.

    Google Scholar 

  • Angluin, D., Krikis, M., Sloan, R. H., and Turán, G. (1997). Malicious omissions and errors in answers to membership queries. Machine Learning, 28(2–3):211–255.

    Article  Google Scholar 

  • Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On power-law relationships of the internet topology. In SIGCOMM, pages 251–262.

    Google Scholar 

  • Gold, E. M. (1967). Language identification in the limit. Information and Control, 10:447–474.

    Article  MATH  Google Scholar 

  • Hagoort, P. (2003). How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. Neuroimage, 20(Supplement 1):S18–S29.

    Article  Google Scholar 

  • Horning, J. J. (1969). A study of grammatical inference. PhD thesis, Stanford University, Stanford:CA, USA.

    Google Scholar 

  • Hume, D. (1909). An Enquiry Concerning Human Understanding, volume XXXVII, Part 3 of The Harvard Classics. P.F. Collier & Son.

    Google Scholar 

  • Huybrechts, R.M.A.C. (1984). The weak adequacy of context-free phrase structure grammar. In de Haan, G.J., Trommelen, M., and Zonneveld, W., editors, Van periferie naar kern, pages 81–99. Foris, Dordrecht, the Netherlands.

    Google Scholar 

  • Ishiszaka, H. (1990). Polynomial time learnability of simple deterministic languages. Machine Learning, 5:151.

    Google Scholar 

  • Kanazawa, M. (1995). Learnable classes of categorial grammars. PhD thesis, Stanford University, Stanford:CA, USA.

    Google Scholar 

  • Lang, K. J., Pearlmutter, B. A., and Price, R. A. (1998). Results of the Abbadingo One DFA learning competition and a new evidence-driven state merging algorithm. In Honavar, V. and Slutzki, G., editors, Proceedings of the 4th International Conference on Grammar Inference, ICGI 1998, volume 1433 of LNCS/LNAI, pages 1–12. Springer-Verlag, Berlin Heidelberg, Germany.

    Google Scholar 

  • Li, M. and Vitányi, P. M. B. (1991). Learning simple concepts under simple distributions. SIAM Journal of Computing, 20(5):911–935.

    Article  Google Scholar 

  • Osherson, D., de Jongh, D., Martin, E., and Weinstein, S. (1997). Handbook of Logic and Language, chapter Formal Learning Theory, pages 737–775. Elsevier Science B.V.

    Google Scholar 

  • Pinker, S. (1999). Words and Rules: The Ingredients of Language. Weidenfeld and Nicolson, London, UK.

    Google Scholar 

  • Pitt, L. and Warmuth, M. (1988). Reductions among prediction problems: On the difficulty of predicting automata. In 3rdConference on Structure in Complexity Theory, pages 60–69.

    Google Scholar 

  • Sakakibara, Y. (1992). Efficient learning of context-free grammars from positive structural examples. Information and Computation, 97:23–60.

    Article  MATH  MathSciNet  Google Scholar 

  • Seginer, Y. (2003). Learning context free grammars in the limit aided by the sample distribution. In de la Higuera, C., Adriaans, P., van Zaanen, M., and Oncina, J., editors, Proceedings of the Workshop and Tutorial on Learning Context-Free Grammars held at the 14thEuropean Conference on Machine Learning (ECML) and the 7thEuropean Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD); Dubrovnik, Croatia, pages 77–88.

    Google Scholar 

  • Shieber, S.M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8(3):333–343.

    Article  Google Scholar 

  • Sokolov, J. and Snow, C. (1994). The changing role of negative evidence in theories of language development. In Gallaway, C. and Richards, B., editors, Input and Interaction in Language Acquisition, pages 38–55. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Solomonoff, R. J. (1997). The discovery of algorithmic probability. Journal of Computer and System Sciences, 55(1):73–88.

    Article  MATH  MathSciNet  Google Scholar 

  • Valiant, L. G. (1984). A theory of the learnable. Communications of the Association for Computing Machinery, 27(11):1134–1142.

    MATH  Google Scholar 

  • van Kampen, J. (1997). First Steps in Wh-movement, PhD thesis, Utrecht University, Utrecht, the Netherlands.

    Google Scholar 

  • van Zaanen, M. (2002). Bootstrapping Structure into Language: Alignment-Based Learning. PhD thesis, University of Leeds, Leeds, UK.

    Google Scholar 

  • van Zaanen, M. and Adriaans, P. (2001). Alignment-Based Learning versus EMILE: A comparison. In Proceedings of the Belgian-Dutch Conference on Artificial Intelligence (BNAIC); Amsterdam, the Netherlands, pages 315–322.

    Google Scholar 

  • van Zaanen, M., Roberts, A., and Atwell, E. (2004). A multilingual parallel parsed corpus as a gold standard for grammatical inference evaluation. In Kranias, L., Calzolari, N., Thurmair, G., Wilks, Y., Hovy, E., Magnusdottir, G., Samiotou, A., and Choukri, K., editors, Proceedings of the Workshop: The Amazing Utility of Parallel and Comparable Corpora; Lisbon, Portugal, pages 58–61.

    Google Scholar 

  • Vervoort, M. (2000). Games, walks and Grammars. PhD thesis, University of Amsterdam.

    Google Scholar 

  • Vosse, T. and Kempen, G. (2000). Syntactic structure assembly in human parsing: a computational model on competitive inhibition and lexicalist grammar. Cognition, 75:105–143.

    Article  Google Scholar 

  • Wolff, J. G. (2003). Information Compression by Multiple Alignment, Unification and Search as a Unifying Principle in Computing and Cognition. Journal of Artificial Intelligence Research, 19:193–230.

    Article  Google Scholar 

  • Yokomori, T. (1988). Learning simple languages in polynomial time. Technical report, SIGFAI, Japanese Society for AI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adriaans, P.W., van Zaanen, M.M. (2006). Computational Grammatical Inference. In: Holmes, D.E., Jain, L.C. (eds) Innovations in Machine Learning. Studies in Fuzziness and Soft Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33486-6_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-33486-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30609-2

  • Online ISBN: 978-3-540-33486-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics