Adaptive Algorithms for the Identification of Sparse Impulse Responses

Part of the Signals and Communication Technology book series (SCT)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Widrow, S. D. Stearns: Adaptive Signal Processing, Englewood Cliffs, NJ, USA: Prentice Hall, 1985.MATHGoogle Scholar
  2. [2]
    S. Haykin: Adaptive Filter Theory, 4th ed., Englewood Cliffs, NJ, USA: Prentice Hall, 2002.Google Scholar
  3. [3]
    D. L. Duttweiler: Proportionate normalized least mean square adaptation in echo cancelers, IEEE Trans. Speech Audio Processing, 8, 508-518, September 2000.CrossRefGoogle Scholar
  4. [4]
    J. Benesty, S. L. Gay: An improved PNLMS algorithm, Proc. ICASSP ’02, 1881-1884, Orlando, FL, USA, 2002.Google Scholar
  5. [5]
    J. Kivinen, M. K. Warmuth: Exponentiated gradient versus gradient descent for linear predictors, Inform. Comput., 132, 1-64, January 1997.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    S. I. Hill, R. C. Williamson: Convergence of exponentiated gradient algorithms, IEEE Trans. Signal Process., 49, 1208-1215, June 2001.CrossRefGoogle Scholar
  7. [7]
    P. O. Hoyer: Non-negative matrix factorization with sparseness constraints, J. of Machine Learning Res., 5, 1457-1469, November 2004.MathSciNetGoogle Scholar
  8. [8]
    S. L. Gay: An efficient, fast converging adaptive filter for network echo cancellation, Proc. Asilomar ’98, 1, 394-398, Asilomar, CA, USA, 1998.Google Scholar
  9. [9]
    P. A. Naylor, J. Cui, M. Brookes: Adaptive algorithms for sparse echo cancellation, Signal Process., submitted.Google Scholar
  10. [10]
    K. Ozeki, T. Umeda: An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties, Electron Commun. Japan, 67(A), 19-27, 1984.MathSciNetGoogle Scholar
  11. [11]
    S. Amari: Natural gradient works efficiently in learning, Neural Compu- tation, 10, 251-276, February 1998.CrossRefGoogle Scholar
  12. [12]
    S. L. Gay, S. C. Douglas: Normalized natural gradient adaptive filtering for sparse and nonsparse systems, Proc. ICASSP ’02, Orlando, FL, USA, 1405-1408, 2002.Google Scholar
  13. [13]
    R. K. Martin, W. A. Sethares, R. C. Williamson, C. R. Johnson, Jr.: Exploiting sparsity in adaptive filters, IEEE Trans. Signal Process., 50, 1883-1894, August 2002.CrossRefGoogle Scholar
  14. [14]
    R. E. Mahony, R. C. Williamson: Prior knowledge and preferential struc- tures in gradient descent learning algorithms, J. of Machine Learning Res., 1, 311-355, Sept. 2001.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    T. Gaensler, J. Benesty, S. L. Gay, M. M. Sondhi: A robust propor- tionate affine projection algorithm for network echo cancellation, Proc. ICASSP ’00, 2, 793-796, Istanbul, Turkey, 2000.Google Scholar
  16. [16]
    O. Hoshuyama, R. Goubran, A. Sugiyama: A generalized proportionate variable step-size algorithm for fast changing acoustic environments, Proc. ICASSP ’04, 161-164, Montreal, Canada, 2004.Google Scholar
  17. [17]
    J. Benesty, Y. Huang, D. R. Morgan: On a class of exponentiated adap- tive algorithms for the identification of sparse impulse responses, in J. Benesty, Y. Huang (eds.): Adaptive Signal Processing: Applications to Real-World Problems, Berlin, Germany: Springer, 2003, Chapter 1, 1-22.Google Scholar
  18. [18]
    J. Benesty, Y. Huang: The LMS, PNLMS, and exponentiated gradient algorithms, Proc. EUSIPCO ’04, 721-724, Vienna, Austria, 2004.Google Scholar
  19. [19]
    J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, S. L. Gay: Ad- vances in Network and Acoustic Echo Cancellation, Berlin, Germany: Springer, 2001.Google Scholar
  20. [20]
    R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth: On the Lambert W Function, Advances in Computational Mathematics, 5,329-359, 1996.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    G.H. Golub, C.F. Van Loan: Matrix Computations, Baltimore, MD: The Johns Hopkins University Press, 1996.MATHGoogle Scholar
  22. [22]
    J. Benesty, Y. Huang, J. Chen: An exponentiated gradient adaptive algorithm for blind identification of sparse SIMO systems, Proc. ICASSP ’04, 2, 829-832, Montral, Canada, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations