Skip to main content

Impact Delivery of Prebiotic Organic Matter to Planetary Surfaces

  • Chapter
Comets and the Origin and Evolution of Life

Abstract

Organic compounds, liquid water, and a source of energy are necessary requirements for life as we know it. Few places in the solar system appear to satisfy these requirements. Besides Earth, Mars and Europa may have provided at some point during their history the most promising environments for the origin of life. Here we address the role of impacts as a mechanism for the delivery of organic compounds to Earth, Mars, Europa, and the Moon through high-resolution hydrocode simulations. The results suggest that on the Earth some amino acids (such as aspartic acid and glutamic acid) could survive large cometary impacts at the percent level, enough to equal or exceed concentrations due to Miller–Urey synthesis in a CO2-rich atmosphere. In particular, a grazing impact could have delivered to early Earth amounts of certain amino acids comparable to the background steady-state production. Substantial survival of some amino acids occurs in cometary impacts for Mars as well. Analogous to the situation on Earth, asteroid impacts on Mars do not seem to result in signi.cant survival, even if lower impact velocities increase the survival of amino acids. In cometary impacts, however, the increased amino acid survival in part counteracts the e.ect of the lower Martian escape velocity (5 km/s for Mars versus 11.2 km/s for the Earth) that causes some projectile material to escape Mars gravity and be lost to space. Projectile escape becomes dominant in grazing impacts, which are thus not a signi.cant source of organics on Mars. Projectile escape is dominant on Europa (escape velocity of 2 km/s); as a result, cometary impacts provide a negligible contribution to Europa’s prebiotic organic inventory. However, as models of the circum-Jovian nebula suggest that Europa might have formed largely bereft of some biogenic elements, cometary impacts could be the primary source of some of Europa’s biogenic elements. Finally, although subject to an impact history similar to that of the Earth and Mars, impact delivery on the Moon is limited by the lower gravity .eld, just as with Europa. This drastically limits the amount of organic molecules that can be successfully delivered intact to the lunar surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, E. (1989), Pre-biotic organic matter from comets and asteroids. Nature, 342, 255–257.

    Article  ADS  Google Scholar 

  • Asano, T. and LeNoble, W.J. (1978), Activation and reaction volumes in solution. Chem. Rev., 78, 407–489.

    Article  Google Scholar 

  • Asphaug, E., and Benz W. (1996), Size, Density, and Structure of Comet Shoemaker-Levy 9 Inferred from the Physics of Tidal Breakup. Icarus, 121, 225–248.

    Article  ADS  Google Scholar 

  • Bada, J.L. (1991), Amino acid cosmogeochemistry. Phil. Trans. R. Soc. Lond. B, 333, 349–358.

    Article  ADS  Google Scholar 

  • Barak, I. and Bar-Nun, A. (1975), The mechanism of amino acid synthesis by high temperature shock-waves. Origins Life, 6, 483–506.

    Article  ADS  Google Scholar 

  • Basiuk, V.A. and Navarro-Gonzales, R. (1998), Pyrolytic behavior of amino acids and nucleic acid bases: Implications for their survival during extraterrestrial delivery. Icarus,134, 269–278.

    Article  ADS  Google Scholar 

  • Basiuk, V.A., Douda, J. and Navarro-Gonzales, R. (1999), Transport of extraterrestrial biomolecules to the Earth: Problem of thermal stability. Adv. Space Res., 24, 505–514.

    Article  ADS  Google Scholar 

  • Benz, W., Cameron, A.G. and Melosh, H.J. (1989), The origin of the Moon and the single impact hypothesis. Icarus, 81, 113–131.

    Article  ADS  Google Scholar 

  • Bernstein, M.P., Dworkin, J.P., Sanford, S.A., Cooper, G.W. and Allamandola, L.J. (2002), Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature, 416, 401–403.

    Article  ADS  Google Scholar 

  • Blank, J.G. and Miller, G.H. (1998), The fate of organic compounds in cometary impacts. In A.F.P. Houwing, A. Paull, R.R. Boyce, P.M. Danehy, M. Hannemann, J.J. Kurtz, T.J. McIntyre, S.J. McMahon, D.J. Mee, R.J. Sandeman and H. Tanno (eds.), Proceedings of the 21st International Symposium on Shock Waves (Panther Press, Fyshwick, Australia), pp. 1467–1572.

    Google Scholar 

  • Blank, J.G., Miller, G.H., Ahrens, M.J. and Winans, R.E. (2001), Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds. Origins Life Evol. Biosph., 31, 15–51.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D. and 11 co-authors (1998), Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origins of comets. Icarus, 133, 147–162.

    Article  ADS  Google Scholar 

  • Brinton, K.L.F. and Bada, J.L. (1996), A reexamination of amino acids in lunar soils: Implications for the survival of exogenous organic material during impact delivery. Geochim. Cosmochim. Acta, 60, 349–354.

    Article  ADS  Google Scholar 

  • Brinton, K.L., Engrand, C., Glavin, D.P., Bada, J.L. and Maurette, M. (1998), A search for extraterrestrial amino acids in carbonaceous antarctic micrometeorites. Origins Life Evol. Biosph., 28, 413–424.

    Article  ADS  Google Scholar 

  • Chamberlin, T.C. and Chamberlin, R.T. (1908), Early terrestrial conditions that may have favored organic synthesis. Science 28, 897–910.

    Article  ADS  Google Scholar 

  • Chang, S. (1993), Prebiotic synthesis in planetary environments. In J.M. Greenberg, C.X. Mendoza-Gomez, V. Pirroncello (eds.) The Chemistry of Life’s Origins, (Kluwer Academic, Boston), 259–300.

    Google Scholar 

  • Chyba, C.F. (1991), Terrestrial mantle siderophiles and the lunar impact record. Icarus, 92, 217–233.

    Article  ADS  Google Scholar 

  • Chyba, C.F., and Phillips, C.B. (2001), Possible Ecosystems and the Search for Life on Europa. Proc. Natl. Acad. Sci. USA, 98, 801–804.

    Article  ADS  Google Scholar 

  • Chyba, C.F., and Phillips, C.B. (2006). In Planets and Life: The Emerging Science of Astrobiology, (eds.) W Sullivan, J Baross. Cambridge: Cambridge University Press, to be published.

    Google Scholar 

  • Chyba, C.F. and Sagan, C. (1992), Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature, 355, 125–132.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Ostro, S.J., and Edwards, B.C. (1998), Radar Detectability of a Subsurface Ocean on Europa. Icarus, 134, 292–302.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J. and Zahnle, K.J. (1993), The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature, 361, 40–44.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J., Brookshaw, L. and Sagan, C. (1990), Cometary delivery of organic molecules to the early Earth. Science, 249, 366–373.

    Article  ADS  Google Scholar 

  • Clark, B.C. (1988), Primeval procreative comet pond. Origins Life, 18, 209–238.

    Article  ADS  Google Scholar 

  • Cronin, J.R. (1976), Acid-labile amino acid precursors in the Murchison meteorite. Origins Life, 7, 337–342.

    Article  ADS  Google Scholar 

  • Cronin, J.R. (1998), Organic molecules on the early Earth. Clues from the origin of the Solar System: Meteorites. In Brack A. (ed.) The molecular origins of life: Assembling pieces of the puzzle (Cambridge Univ. Press, Cambridge, UK), 119–146.

    Google Scholar 

  • Cronin, J.R. and Pizzarello, S. (1983), Amino acids in meteorites. Adv. Space Res., 3(9), 5–18.

    Article  ADS  Google Scholar 

  • Cronin, J.R., Pizzarello, S. and Cruikshank, D.P. (1988), Organic matter in carbonaceous chondrites, planetary satellites, asteroids, and comets. In J.F. Kerridge and M.S. Matthews (eds.) Meteorites and the Early Solar System (Univ. of Arizona Press, Tucson, AZ), 819–857.

    Google Scholar 

  • Delsemme, A.H. (1988), The Chemistry of comets. Phil. Trans. R. Soc. London Ser. A, 325, 509–523.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. (1991), Nature and History of the Organic Compounds in Comets: An Astrophysical View. In R.L. Newburn, M. Neugenbauer, J. Rahe (eds.) Comets in the Post-Halley Era. Vol. 1 (Kluwer, Dordrecht), 377–428.

    Google Scholar 

  • Edmond, J.M., Von Damm, K.L. and McDuff, R.E. (1982), Measures, C.I., Chemistry of hot springs on the East Pacific Rise and their e.uent dispersal. Nature, 297, 187–191.

    Article  ADS  Google Scholar 

  • Fox, S.W., Harada, K. and Hare, P.E. (1973), Accumulated analyses of amino acid precursors in returned lunar samples. Proc. 4th Lunar Sci. Conf.; Geochim. Cosmochim. Acta Suppl.4 (Pergamon Press), 2241–2248.

    Google Scholar 

  • Fox, S.W., Harada, K. and Hare, P.E. (1975), Amino acids precursors in returnaed lunar samples from Apollo 17: Further evaluations of contamination. Lunar Planet. Sci. Conf., 6, 271.

    ADS  Google Scholar 

  • Fox, S.W., Harada, K. and Hare, P.E. (1976), Amino acid precursors in lunar fines: Limits to the contribution of jet exhaust. Geochim. Cosmochim. Acta, 40, 1069–1071.

    Article  ADS  Google Scholar 

  • Fox, S.W., Harada, K. and Hare, P.E. (1981), Amino acids from the moon –Notes on meteorites. In Subcellular biochemistry. Vol. 8 (Plenum Publishing), 357–373.

    Google Scholar 

  • Gehrke, C.W., Zumwalt, R.W., Kuo, K., Rash, J.J., Aue, W.A., Stalling, D.L., Kvenvolden, K.A., Ponnamperuma, C. (1972) Research for amino acids in lunar samples. Space Life Sci., 3, 439–449.

    Article  ADS  Google Scholar 

  • Gehrke, C.W., Zumwalt, R.W., Kuo, K., Ponnamperuma, C. and Shimoyama, A. (1975), Search for amino acids in Apollo returned lunar soil. Orig. Life, 6 541–550.

    Article  ADS  Google Scholar 

  • Gilbert, G.K. (1893), The Moon’s face, a study of the origin of its features. Bull. Philos. Cos. Wash (D.C.), 12, 241–292.

    Google Scholar 

  • Glavin, D.P. and Bada, J.L. (2001), Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology, 1, 259–269.

    Article  ADS  Google Scholar 

  • Hamilton, P.B. (1965), Amino acids on hands. Nature, 205, 284–285.

    Article  ADS  Google Scholar 

  • Hamilton, P.B. and Nagy, B. (1972), Problems in the search for amino acids in lunar fines. Space Life Sci., 3, 439–449.

    Article  ADS  Google Scholar 

  • Hamilton, P.B. and Nagy, B. (1975), Comments on the search for amino acids in Apollo 15, 16, and 17 lunar samples. A study in contamination control. Anal. Chem., 47, 1718–1720.

    Article  Google Scholar 

  • Harada, K. Hare, P.E., Windsor, C.R. and Fox, S.W. (1971), Evidence for compounds hydrolyzable to amino acids in aqueous extracts of Apollo 11 and Apollo 12 lunar fines. Science, 173, 433–435.

    Article  ADS  Google Scholar 

  • Hare, P.E., Harada, K. and Fox, S.W. (1970), Analyses for amino acids in lunar fines. Proc. Apollo 11 Lunar Sci. Conf.; Geochim. Cosmochim. Acta Suppl. 1, Vol. 2 (Pergamon Press), 1799–1803.

    Google Scholar 

  • Hennet, R.J.-C., Holm, N.G., and Engel, M.H. (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: A perpetual phenomenon? Naturwiss., 79, 361–365.

    Article  ADS  Google Scholar 

  • Holm, N.G., and Anderson, E.M. (1995) Abiotic synthesis of organic compounds under the conditions of submarine hydrothermal systems: A perspective. Planet. Space Sci., 43, 153–159.

    Article  ADS  Google Scholar 

  • Holm, N.G., and Anderson, E.M. (1998) Organic molecules on the early Earth: Hydrothermal systems. In A. Brack (ed.) The molecular origins of life: Assembling pieces of the puzzle, Cambridge Univ. Press (Cambridge, UK), pp. 86–89.

    Google Scholar 

  • Holman, M.J., and Wisdom, J. (1993), Dynamical Stability in the Outer Solar System and the Delivery of Short Period Comets. Astronom. J., 105, 1987–1999.

    Article  ADS  Google Scholar 

  • Imai, E.-i., Honda, H., Hatori, K., Brack, A., and Matsuno, K. (1999) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science, 283, 831–833.

    Article  ADS  Google Scholar 

  • Kargel, J.S., Kaye, J.Z., Head, J.W., III, Marion, G.M., Sassen, R., Crowley, J.K., Ballesteros, O.P., Grant, S.A., and Hogenboom, D.L. (2000), Europa’s Crust and Ocean: Origin, Composition, and the Prospects for Life. Icarus, 148, 226–265.

    Article  ADS  Google Scholar 

  • Kasting, J.F. (1993), Earth’s early atmosphere. Science, 259, 920–925.

    Article  ADS  Google Scholar 

  • Kasting, J.F. and Brown, L.L. (1998), The early atmosphere as a source of biogenic compounds. In Brack A. (ed.) The molecular origins of life: Assembling pieces of the puzzle (Cambridge Univ. Press, Cambridge, UK), pp. 35–56.

    Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Russel, C.T., Volwerk, M., Walker, R.J., and Zimmer, C. (2000), Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. Science, 289, 1340–1343.

    Article  ADS  Google Scholar 

  • Kring, D.A., and Cohen, B.A. (2002), Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J. Geophys. Res., 107(E2), doi:10.1029/2001JE001529.

    Google Scholar 

  • Krueger, F.R. and Kissel, J. (1987), The chemical composition of the dust of comet P/Halley as measured by “PUMA” on board VEGA-1. Naturwiss., 74, 312–316.

    Article  ADS  Google Scholar 

  • Levison, H.F., Duncan, M.J., Zahnle, K., Holman, M., and Dones, L. (2000), Planetary Impact Rates from Ecliptic Comets. Icarus, 143, 415–420.

    Article  ADS  Google Scholar 

  • Lodders, K., and Fegley, B. (1998), The Planetary Scientist’s Companion (Oxford Univ. Press, New York).

    Google Scholar 

  • Lunine, J.I., and Stevenson, D.J. (1982) Formation of the Galilean Satellites in a Gaseous Nebula. Icarus, 52, 14–39.

    Article  ADS  Google Scholar 

  • McCollom, T.M. (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res., 104(E12), 30,729–30,742.

    Google Scholar 

  • McGlaun, J.M., Thompson, S.L. and Elrick, M.G. (1990), CTH: A three-dimensional shock wave physics code. Int. J. Impact Eng., 10, 351–360.

    Article  Google Scholar 

  • McKay, C.P. (1997), The search for life on Mars. Origins Life Evol. Biosph., 27, 263–289.

    Article  ADS  Google Scholar 

  • McKay, C.P. and Borucki, W.J. (1997), Organic synthesis in experimental impact shocks. Science, 276, 390–392.

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1989), Impact Cratering: A Geologic Process. (Oxford University Press, New York).

    Google Scholar 

  • Melosh, H.J. and Vickery, A.M. (1989), Impact erosion of the primordial atmosphere of Mars. Nature, 338, 487–489.

    Article  ADS  Google Scholar 

  • Miller, S.L. (1953), The production of amino acids under possible primitive Earth conditions. Science, 117, 528–529.

    Article  ADS  Google Scholar 

  • Miller, S.L. (1998), The endogenous synthesis of organic compounds. In A. Brack (ed.) The Molecular Origin of Life (Cambridge Univ. Press, Cambridge, UK), 59–85.

    Google Scholar 

  • Modzeleski, V.E., Modzeleski, J.E., Mohammed, M.A.J., Nagy, L.A., Nagy, B., McEwan, W.S., Urey, H.C., and Hamilton, P.B. (1973) Carbon compounds in pyrolysates and amino acids in extracts of Apollo 24 lunar samples. Nature (Phys. Sci.), 242, 50–52.

    Article  ADS  Google Scholar 

  • Monnard, P.-A., Apel, C.L., Kanavarioti, A. and Deamer, D. W. (2002). Influence of ionic solutes on self-assembly and polymerization processes related to early forms of life: Implications for a prebiotic qaueous medium. Astrobiology, 2, 213–219.

    Article  Google Scholar 

  • Muñoz Caro, G.M., Melerhenrich, U.J., Schutte, W.A., Barbier, B., Arcones Segovia, A., Rosenbauer, H., Thiemann, W.H.-P., Brack, A. and Greenberg, J.M. (2002), Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 416, 403–405.

    Article  ADS  Google Scholar 

  • Nagy, B. and 10 others (1971), Carbon compounds in Apollo 12 lunar samples. Nature, 232, 94–98.

    Article  ADS  Google Scholar 

  • Oberbeck, V.R. and Aggarwal, H. (1992), Comet impacts and chemical evolution of the bombarded Earth. Origins Life Evol. Biosph., 21, 317–338.

    Article  ADS  Google Scholar 

  • Olsson-Steel, D. (1987), Collisions in the Solar System –IV. Cometary impacts upon the planets. Mon. Not. R. Ast. Soc., 227, 501–524.

    ADS  Google Scholar 

  • Oró, J. (1961), Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190, 389–390.

    Article  ADS  Google Scholar 

  • Pappalardo, R.T., and 31 others (1999), Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., 104, 24015–24056.

    Article  ADS  Google Scholar 

  • Peterson, E., Hörz, F. and Chang, S. (1997), Modification of amino acids at shock pressures of 3.5 to 32 GPa. Geochim. Cosmochim. Acta, 61, 3937–3950.

    Article  ADS  Google Scholar 

  • Pierazzo, E., and Chyba, C.F. (1999a), Amino Acid Survival in Large Cometary Impacts. Meteoritics Planet. Sci., 34, 909–918.

    Article  ADS  Google Scholar 

  • Pierazzo, E., and Chyba, C.F. (1999b), Impact Delivery of Organics to Mars. Bull. Am. Astron. Soc., 31(4), 1183.

    ADS  Google Scholar 

  • Pierazzo, E. and Chyba, C.F. (2002), Cometary delivery of biogenic elements to Europa. Icarus, 157, 120–127.

    Article  ADS  Google Scholar 

  • Pierazzo, E. and Chyba, C.F. (2003), Impact delivery of organics to Mars: Oblique Impacts. Lunar Planet. Sci. Conf., 34, Abst. #1645.

    Google Scholar 

  • Pierazzo, E., and Melosh, H.J. (2000) Hydrocode Modeling of Oblique Impacts: The Fate of the Projectile. Meteoritics Planet. Sci., 35, 117–130.

    Article  ADS  Google Scholar 

  • Pierazzo, E., Vickery, A.M. and Melosh, H.J. (1997), A re-evaluation of impact melt production. Icarus, 127, 408–423.

    Article  ADS  Google Scholar 

  • Pierazzo, E., Artemieva, N.A. and Spitale, J.N. (2001), The Ries impact event: A tale of two hydrocodes (Abstract). In F. Martinez-Ruis, M. Ortera-Huertas and I. Palomo (eds.) Impact markers in the stratigraphic record. Abstracts from the 6th ESF IMPACT Workshop (ESF, Granada, Spain), pp. 87–88.

    Google Scholar 

  • Pohorille, A. (2002), From organic molecules in space to the origins of life and back. Adv. Space Res., 30, 1509–1520.

    Article  ADS  Google Scholar 

  • Pollack, J.B. (1979), Climate change on the terrestrial planets. Icarus, 37, 479–553.

    Article  ADS  Google Scholar 

  • Pollack, J.B., Kasting, J.F., Richardson, S.M. and Poliakoff, K. (1987), The case for a wet, warm climate on early Mars. Icarus, 71, 203–224.

    Article  ADS  Google Scholar 

  • Prinn, R.G., and Fegley, B. (1989), Solar Nebula Chemistry: Origin of Planetary, Satellite and Cometary Volatiles. In S.K. Atreya, J.B. Pollack and M.S. Matthews, (eds.) Origin and Evolution of Planetary and Satellite Astmospheres (Univ. of Arizona Press, Tucson), pp. 78–136.

    Google Scholar 

  • Rahe, J., Vanysek, V. and Weissman, P.R. (1994), Properties of cometary nuclei. In T. Gehrels (ed.) Hazards Due to Comets and Asteroids (Univ. of Arizona Press, Tucson), pp. 597–634.

    Google Scholar 

  • Rodante, F. (1992), Thermodynamics and kinetics of decomposition processes for standard α-amino acids and some of their dipeptides in the solid state. Thermochim. Acta, 200, 47–61.

    Article  Google Scholar 

  • Schlesinger, G. and Miller, S.L. (1983), Prebiotic syntheses in atmospheres containing CH4, CO, and CO2. I. Amino acids. J. Mol. Evol., 19, 376–382.

    Article  Google Scholar 

  • Segura, T.L., Toon, O.B., Colaprete, A. and Zahnle, K. (2002), Environmental effects of large impacts on Mars. Science, 298, 1977–1980.

    Article  ADS  Google Scholar 

  • Shock, E.L. and Schulte, M.D. (1990), Summary and implications of reported amino acid concentrations in the Murchison meteorite. Geochim. Cosmochim. Acta, 54, 3159–3173.

    Article  ADS  Google Scholar 

  • Shock, E.L. and Schulte, M.D. (1998), Organic synthesis during fluid mixing in hydrothermal systems. J. Geophys. Res., 103(E12), 28,513–28,527.

    Google Scholar 

  • Shoemaker, E.M. (1962), Interpretations of lunar craters. In Z. Kopal (ed.) Physics and Astronomy of the Moon (Academic Press, New York), pp. 283–359.

    Google Scholar 

  • Shuvalov, V.V. (1999), Multi-dimensional hydrodynamic code SOVA for interfacial flows: Application to the thermal layer effect. Shock Waves, 9, 381–390.

    Article  MATH  ADS  Google Scholar 

  • Snyder, L. (1997), The search for interstellar glycine. Origins Life Evol. Biosph. 27, 115–133.

    Article  ADS  Google Scholar 

  • Stevenson, D. (2000), Europa’s Ocean –the Case Strengthens. Science, 289, 1305–1307.

    Article  Google Scholar 

  • Stöffer, D., Artemieva, N.A. and Pierazzo, E. (2002), Modeling the Ries-Steinheim impact event and the formation of the Moldavite strewn field. Meteoritics Planet. Sci., 37, 1893–1907.

    Article  ADS  Google Scholar 

  • Stribling, R. and Miller, S.L. (1987), Energy yields for hydrogen cyanide and formaldehyde synthesis: the HCN and amino acid concentrations in the primitive ocean. Origins Life, 17, 261–273.

    Article  Google Scholar 

  • Thomas, P.J. and Brookshaw, L. (1997), Numerical models of comets and asteroid impacts. In P.J. Thomas, C.F. Chyba, C.P. Mckay (eds.) Comets and the Origin and Evolution of Life. (Springer-Verlag, New York), pp. 131–145.

    Google Scholar 

  • Thompson, S.L. (1979), CSQII. An Eulerian finite differences program for two-dimensional material response. Part I. Material Section. Rep. SAND77–1339 (Sandia National Laboratories, Albuquerque,NM).

    Google Scholar 

  • Thompson, S.L. (1985), CSQIII An Eulerian Finite Difference Program for Two-Dimensional Material Response: Users Manual. Rep. SAND87–2763 (Sandia Natl. Lab., Albuquerque, NM), 87 pp.

    Google Scholar 

  • Thompson, S.L. and Lauson, H.S. (1972), Improvements in the Chart D radiationhydrodynamic code III: Revised analytical equation of state. Rep. SC-RK-61 0714 (Sandia National Laboratories, Albuquerque, NM).

    Google Scholar 

  • Tingle, T.N., Tyburczy, J.A., Ahrens, T.J. and Becker, C.H. (1992), The fate of organic matter during planetary accretion: Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite. Origins Life Evol. Biosph., 21, 385–397.

    Article  ADS  Google Scholar 

  • Turtle, E.P., and Pierazzo, E. (2001), Constraints on the Thickness of an Europan Ice Shell from Impact Crater Simulations. Science, 234, 1326–1328.

    Article  ADS  Google Scholar 

  • Vallentyne, J.R. (1964), Biogeochemistry of organic matter II. Thermal reaction kinetics and transformation products of amino compounds. Geochim. Cosmochim. Acta, 28, 157–188.

    Article  ADS  Google Scholar 

  • Walker, J.C.G. (1986), Carbon dioxide on the early Earth. Origins Life, 16, 117–127.

    ADS  Google Scholar 

  • Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998), Prokaryotes: The Unseen Majority. Proc. Natl. Acad. Sci. USA, 95, 6578–6583.

    Article  ADS  Google Scholar 

  • Yanagawa, H., and Kobayashi, K. (1992) An experimental approach to chemical evolution in submarine hydrothermal systems. Origins Life Evol. Biosph., 22, 147–159.

    Article  ADS  Google Scholar 

  • Zahnle, K.J. (1986), Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J. Geophys. Res., 91, 2819–2834.

    Article  ADS  Google Scholar 

  • Zahnle, K., Dones, L. and Levison, H.F. (1998), Cratering Rates on the Galilean Satellites. Icarus, 136, 202–222.

    Article  ADS  Google Scholar 

  • Zahnle, K., Levison, H., Dones, L. and Schenk, P. (1999), Cratering rates in the outer Solar System (CD-ROM). Lunar Planet. Sci. Conf., 30, Abst. #1770.

    Google Scholar 

  • Zhao, M. and Bada, J. (1989), Extraterrestrial amino acids in Cretaceous/ Tertiary boundary sediments at Stevns Klint, Denmark. Nature, 339, 463–465.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Pierazzo, E., Chyba, C. (2006). Impact Delivery of Prebiotic Organic Matter to Planetary Surfaces. In: Thomas, P.J., Hicks, R.D., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33088-7_5

Download citation

Publish with us

Policies and ethics