Skip to main content

Comets and the Origin and Evolution of Life

  • Chapter

Part of the Advances in Astrobiology and Biogeophysics book series

Abstract

It is likely that a combination of exogenous and endogenous sources contributed to the synthesis and accumulation of the building blocks of life on the early Earth. It may even have taken several starts before life surpassed the less than ideal conditions at the surface. The importance of comets for the origin of life on the Earth has been strongly advocated for several decades. We review the historical development of this idea, the collisional history of the early solar system, and the role of comets in delivering a large fraction of volatiles and intact carbon compounds onto the early planets.

Keywords

  • Solar System
  • Circumstellar Disk
  • Early Solar System
  • Infrared Space Observatory
  • Prebiotic Synthesis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden, W.C. (1929), Thomas Chrowder Chamberlin’s contributions to glacial geology. Jour. Geol., 37, 293–319.

    CrossRef  ADS  Google Scholar 

  • Allen, C.S. (1973), Astrophysical Quantities (The Athlone Press, London).

    Google Scholar 

  • Alvarez, W. and Muller, R.A. (1984), Evidence from crater ages for periodic impacts on Earth. Nature, 308, 718–720.

    CrossRef  ADS  Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980), Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science, 208, 1095–1108.

    CrossRef  ADS  Google Scholar 

  • Anders, E. (1989), Pre-biotic organic matter from comets and asteroids. Nature, 342, 255–257.

    CrossRef  ADS  Google Scholar 

  • Anders, E., and Owen, T. (1977), Mars and Earth: Origin and abundance of volatiles. Science, 198, 453–465.

    CrossRef  ADS  Google Scholar 

  • Aumann, H.H., Gillett, F.C., Beichmann, C.A., de Jong, T., Houck, J.R., Low, F., Neugebauer, G., Walker, R.G. and Wesselius, P. (1984), Discovery of a shell around Alpha Lyrae. Astrophys. Jour. Lett., 278, L23-L27.

    CrossRef  ADS  Google Scholar 

  • Bada, J.L. And Lazcano, A. (2003) Perceptions of science. Prebiotic soup- revisiting the Miller experiment. Science, 300, 745–746.

    CrossRef  Google Scholar 

  • Bailey, M.E., Clube, S.V.M., and Napier, W.M. (1990), The Origin of Comets (Pergamon Press, Oxford), p. 452.

    Google Scholar 

  • Barak, I. And Bar-Nun, A. (1975), The mechanism of amino acid synthesis by high temperature shock waves. Origins Life, 6, 483–506.

    CrossRef  ADS  Google Scholar 

  • Bar-Nun, A., Bar-Nun, N., Bauer, S.H., and Sagan C. (1970), Shock synthesis of amino acids in simulated primitive environments. Science, 168, 470–473.

    CrossRef  ADS  Google Scholar 

  • Bar-Nun, A., Lazcano-Araujo, A., and Oró, J. (1981), could life have originated in cometary nuclei? Origins Life, 11, 387–394.

    CrossRef  ADS  Google Scholar 

  • Barrett, A.A. (1978), J. Roy. Soc. Can., 72, 81.

    ADS  Google Scholar 

  • Benz, W., Slattery, W.L., and Cameron, A.G.W. (1986), The origin of the Moon and the single impact hypothesis. I. Icarus, 66, 515–535.

    CrossRef  ADS  Google Scholar 

  • Benz, W., Slattery, W.L., and Cameron, A.G.W. (1987), The origin of the Moon and the single impact hypothesis. II. Icarus, 71, 30–45.

    CrossRef  ADS  Google Scholar 

  • Bernath, P.F., Hinkle, K.H., and Keady, J.J. (1989), Detection of C5 in the circumstellar shell of ICR+10216. Science, 244, 562–564.

    CrossRef  ADS  Google Scholar 

  • Berzelius, J.J. (1834), Über Meteorsteine, 4. Meteorstein von Alais. Ann. Phys. Chem., 33, 113–123.

    CrossRef  ADS  Google Scholar 

  • Beust, H., Lagrange-Henri, A.M., Vidal-Majdar, A., and Ferlet, R. (1990). The β Pictoris circumstellar disk X. Numerical simulations of infalling evaporating bodies. Astron. Astrophys., 236, 202–216.

    ADS  Google Scholar 

  • Bockelee-Morvan D., Crovisier J., Mumma M. and Weaver H. (2004), The Volatile Composition of Comets. In Comets II, M. Festou, H.U. Keller, and H.A. Weaver (eds.), Univ. of Arizona, Tucson.

    Google Scholar 

  • Boehnhardt H., Fechtig H., and Vanysek V. (1990), The possible role of organic polymers in the structure and fragmentation of dust in the coma of comet P/Halley.Astron. Astrophys., 231, 543–547.

    ADS  Google Scholar 

  • Briggs, R., Ertem, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gómez, X.C., and Schutte, W. (1992), Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Origins Life, 22, 287–307.

    CrossRef  Google Scholar 

  • Brown, H. (1952), Rare gases and the formation of the Earth’s atmosphere. In G.H. Kuiper (ed.), The Atmospheres of the Earth and Planets (Chicago University Press, Chicago), pp. 258–266.

    Google Scholar 

  • Brown, J.C. and Hughes, D.W. (1977), Tunguska’s comet and non-thermal 14C production in the atmosphere. Nature, 268, 512–514.

    CrossRef  ADS  Google Scholar 

  • Butlerow, A. (1861), Formation sintetique d’une substance sucreé. Compt. Rend. Acad. Sci., 53, 145–147.

    Google Scholar 

  • Cameron, A.G.W. (1988), Origin of the solar system. Annu. Rev. Astron. Astrophys., 26, 441–472.

    CrossRef  ADS  Google Scholar 

  • Cameron, A.G.W. and Benz, W. (1989), Possible scenarios resulting from the giant impact. Proc. Lunar Planet. Sci. Conf. XX, 715.

    Google Scholar 

  • Chamberlin, T.C. (1893), The diversity of the glacial period. Am. Jour. Sci., 45, 171–200.

    Google Scholar 

  • Chamberlin, T.C. (1894), Proposed genetic classification of Pleistocene glacial formations. Jour. Geol., 2, 517–538.

    CrossRef  ADS  Google Scholar 

  • Chamberlin, T.C. (1904), Fundamental problems of geology. Carnegie Institution of Washington Yearbook No. 2: 261–270.

    Google Scholar 

  • Chamberlin, T.C. (1911), The seeding of planets. Jour. Geol., 19, 175–178.

    CrossRef  Google Scholar 

  • Chamberlin, T.C. and Chamberlin, R.T. (1908), Early terrestrial conditions that may have favored organic synthesis. Science, 28, 897–910.

    CrossRef  ADS  Google Scholar 

  • Chang, S. (1979), Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life. In M. Neugebauer, D.K. Yeomands, J.C. Brandt and R.W. Hobs (eds.), Space Missions to Comets (NASA CP 2089, Washington, DC), pp. 59–111.

    Google Scholar 

  • Chyba, C.F. (1987), The cometary contribution to the oceans of the primitife Earth. Nature, 330, 632–635.

    CrossRef  ADS  Google Scholar 

  • Chyba, C.F. (1990), Impact delivery and erosion of planetary oceans in the early inner solar system. Nature, 343, 129–133.

    CrossRef  ADS  Google Scholar 

  • Chyba, C.F. (1991), Terrestrial mantle siderophiles and the linear impact record. Icarus, 92, 217–233.

    CrossRef  ADS  Google Scholar 

  • Chyba, C.F. and Sagan, C. (1987), Cometary organics but no evidence for bacteria. Nature, 329, 208.

    CrossRef  ADS  Google Scholar 

  • Chyba, C.F. and Sagan, C. (1992), Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules; an inventory for the origin of life. Nature, 355, 125–132.

    CrossRef  ADS  Google Scholar 

  • Chyba, C.F. and Sagan, C. (1997) Comets as a source of prebiotic organic molecules for the early Earth. In P.J. Thomas, C.F. Chyba, and C.P. McKay (eds), Comets and the Origin and Evolution of Life. (Springer-Verlag, New York), pp. 147–174.

    Google Scholar 

  • Chyba, C.F., Thomas, P.J., Brookshaw, L., and Sagan, C. (1990), Cometary delivery of organic molecules to the early Earth. Science, 249, 366–373.

    CrossRef  ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J., and Zahnle, K.J. (1993), The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature, 361, 40–44.

    CrossRef  ADS  Google Scholar 

  • Clark, B.C. (1988), Primeval procreative comet pond. Origins Life, 18, 209–238.

    CrossRef  ADS  Google Scholar 

  • Colangeli, L., Bar-Nun, A., Brucato, J.R., Hudson, R.L. and Moore, M. (2004), Laboratory Experiments to Study Cometary Physics and Chemistry. In Comets II, M. Festou, H.U. Keller, and H.A. Weaver (eds.), Univ. of Arizona, Tucson, pp. 695–718.

    Google Scholar 

  • Cottin, H., Gazeau, M.C., Benilan, Y.; Raulin, F. (2001), Polyoxymethylene as Parent Molecule for the Formaldehyde Extended Source in Comet Halley. Astrophys. Journ. 556, 417–420.

    CrossRef  ADS  Google Scholar 

  • Cottin, H., Bénilan, Y., Gazeau, M., Raulin, F. (2004), Origin of cometary extended sources from degradation of refractory organics on grains: polyoxymethylene as formaldehyde parent molecule, Icarus, 167, 397–416.

    CrossRef  ADS  Google Scholar 

  • Crovisier J. (1997) published 1999, Infrared Observations Of Volatile Molecules In Comet Hale-Bopp. Earth, Moon and Planets, 79, 125–143.

    CrossRef  ADS  Google Scholar 

  • Crovisier, J. (2004), The Molecular Complexity of Comets, In Astrobiology: Future Perspectives, P. Ehrenfreund et al., (eds.), Kluwer Academic Publisher, Dortdrecht.

    Google Scholar 

  • Daniel, R.M. (1992), Modern life at high temperatures, Origins Life, 22, 33–42.

    CrossRef  Google Scholar 

  • Davis, M., Hut, P. and Muller, R.A. (1984), Extinction of species by periodic comet showers. Nature, 308, 715–717.

    CrossRef  ADS  Google Scholar 

  • Delsemme, A.H. (1991), Nature and history of the organic compounds in comets: An astrophysical view. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II (Dordrecht, Boston), pp. 377–427.

    Google Scholar 

  • Delsemme, A.H. (1992), Cometary origin of carbon, nitrogen and water on the Earth. Origins Life, 21, 279–298.

    Google Scholar 

  • DiSanti, M.A., Mumma, M.J., Russo, N.D., Magee-Sauer, K. (2001), Carbon Monoxide Production and Excitation in Comet C/1995 O1 (Hale-Bopp): Isolation of Native and Distributed CO Sources. Icarus, 153, 361–390.

    CrossRef  ADS  Google Scholar 

  • Donn, B.D. (1976), The Study of Comets (NASA SP-393, Washington DC). Eberhardt, P., Krankowski, D., Schutte, W., Dolder, U., Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbermann, U., Hodges, R.R., Hoffman, J.H. and Illiano, J.M. (1987), The CO and NH2 abundance in comet P/Halley. Astron. Astrophys., 187, 481–487.

    Google Scholar 

  • Ehrenfreund, P., and Charnley, S.B. (2000), Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth, Ann. Rev. Astron. Astrophys., 38, 427–483.

    CrossRef  ADS  Google Scholar 

  • Ehrenfreund, P., Irvine, W.M., Becker, L., Blank, J., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaije, H., Lazcano, A., Owen, T., and Robert, F. (2002), Astrophysical and astrochemical insights into the origin of life, Repts. Prog. Physics, 65, 1427–1487.

    CrossRef  ADS  Google Scholar 

  • Ehrenfreund, P., Charnley, S.B., Wooden, D.H. (2004), From interstellar material to cometary particles and molecules. In Comets II, M. Festou, H.U. Keller, and H.A. Weaver (eds.), Univ. of Arizona, Tucson, pp. 115–136.

    Google Scholar 

  • Encrenaz, T., and Knacke, R. (1991), Carbonaceous Compounds in Comets. In R.L. Newburn, M. Neugebauer and J. Rahe (eds), Comets in the Post-Halley Era, Vols I-II (Dordrecht, Boston), pp. 107–137.

    Google Scholar 

  • Everhart, E. (1969), Close encounters of comets and planets. Astrophys. Jour., 74, 735–739.

    ADS  Google Scholar 

  • Farley, J. (1977), The Spontaneous Generation Controversy: From Descartes to Oparin (John Hopkins University Press, Baltimore).

    Google Scholar 

  • Fenton, C.L. and Fenton, M.A. (1952), Giants of Geology (Doubleday, New York).

    Google Scholar 

  • Fomenkova M.N. (1999), On the Organic Refractory Component of Cometary Dust. Space Science Reviews, 90, 109–114.

    CrossRef  ADS  Google Scholar 

  • Forterre, P. (1995), Thermoreduction, a hypothesis for the origin of prokaryotes. C.R. Acad. Sci. Paris, 318, 1–8.

    Google Scholar 

  • Gardinier A., Derenne S., Robert F., Behar F., Largeau C. and Maquet J. (2000), Solid state CP/MAS 13C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study. Earth Planet Sci. Letters, 184, 9–21.

    CrossRef  ADS  Google Scholar 

  • Gottschal, J.C. and Prins, R.A. (1991), Thermophiles: A life at elevated temperatures. Trends in Ecol. And Evol., 6, 157–161.

    CrossRef  Google Scholar 

  • Gould, S.J. (1983), Hen’s Teeth and Horse’s Toes: Further Reflections in Natural History (W.W. Norton, New York).

    Google Scholar 

  • Greenberg, M.J. (1983), Chemical evolution of interstellar dust - a source of prebiotic material? In C. Ponnamperuma (ed.), Comets and the Origin of Life (Reidel, Dordrecht), pp. 111–127.

    Google Scholar 

  • Greenberg, M.J. and Grim, R. (1986) The origin and evolution of cometary nuclei and comet Halley results. In B. Battrick, E.J. Rolfe and R. Reinhard (eds.), 20th ESLAB Symposium on the Exploration of Halley’s Comet (ESA Report SP-250), pp. 255–263.

    Google Scholar 

  • Greenberg JM. (1998), Making a comet nucleus. Astron. Astrophys., 330, 375–380.

    ADS  Google Scholar 

  • Grieve, R.A.F. and Robertson, P.B.: (1979), The terrestrial cratering record I. Current status of observations. Icarus, 38, 212–219.

    CrossRef  ADS  Google Scholar 

  • Grün, E., Bar-Nun, A., Benkhoff, J., Bischoff, A., Düren, H., Hellmann, H., Hesselbarth, P., Hsiung, P., Keller, H.U., Klinger, J., Knölker, J., Kochan, H., Kohl, H., Kölzer, G., Krankowsky, D., Lämmerzahl, P., Mauersberger, K., Neukum, G., Oehler, A., Ratke, L., Roessler, K., Schewm, G., Spohn, G., Stöffer, D. and Thiel, K. (1991), Laboratory simulation of cometary processes: Results from .rst KOSI experiments. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, vols. I-II (Dordrecht, Boston), pp. 277–297.

    Google Scholar 

  • Halliday, A. (2000), Terrestrial accretion rates and the origin of the Moon, Earth and Planetary Science Letters, 176, 17–30.

    CrossRef  ADS  Google Scholar 

  • Hän, T.M. and Runnegar, B. (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science, 257, 232–235.

    CrossRef  ADS  Google Scholar 

  • Hanner M.S. and Bradley J.P. (2004), Chemical composition of Comet Dust. In Comets II, M. Festou, H.U. Keller, and H.A. Weaver (eds.), Univ. of Arizona, Tucson, pp. 555–564.

    Google Scholar 

  • Hanner, M.S., Lynch, D.K., Russell, R.W., Hackwell, J. A., Kellogg, R., and Blaney D. (1996), Mid-Infrared Spectra of Comets P/Borrelly, P/Faye, and P/Schaumasse. Icarus, 124, 344–351.

    CrossRef  ADS  Google Scholar 

  • Hayashi, C., Nakasawa, K. and Nakasawa, Y. (1985), Formation of the solar system. In D.C. Black and M.S. Matthews (eds.), Protostars and Planets II (University of Arizona Press, Tucson), pp. 1100–1153.

    Google Scholar 

  • Hinkle, K.H., Keady, J.J. and Bernath, P.F. (1988), Detection of C3 in the interstellar shell of IRC+10216. Science, 241, 1319–1320.

    CrossRef  ADS  Google Scholar 

  • Hobbs, L.M., Vidal-Majdar, A., Ferlet, R., Albert, C.E., and Gry, C. (1985), The gaseous component of the disk around Beta Pictoris. Astrophys. Jour. Lett., 293, L29–L33.

    CrossRef  ADS  Google Scholar 

  • Holland, H.D. (1994), Early Proterozoic atmospheric change. In S. Bengston (ed.), Early Life on Earth. Nobel Symposium No. 84, Columbia University Press, New York, pp. 237–244.

    Google Scholar 

  • Hollis, J.M., Snyder, L.E., Suenram, R.D. and Lovas, F.J. (1980), A search for the lowest energy conformer of interstellar glycine. Astrophys. Jour., 241, 1001–1006.

    CrossRef  ADS  Google Scholar 

  • Holm, N.G. (1992), Marine hydrothermal systems and the origin of life. Origins Life, 22. Special Issue.

    Google Scholar 

  • Hong, J.H. and Becker, R.S. (1979), Hydrogen atom initiated chemistry. J. Mol. Evol., 13, 15–26.

    CrossRef  Google Scholar 

  • Hoyle, F. and Wickramasinghe, C. (1994), From Grains to Bacteria (University College Cardiff Press, Bristol).

    Google Scholar 

  • Hsü, K.J. (1980), Terrestrial catastrophe caused by cometary impact at the end of Cretaceous. Nature, 285, 201–203.

    CrossRef  ADS  Google Scholar 

  • Huber, R., Kurr, M., Jannasch, H.W., and Stetter, K.O. (1989), A novel group of abyssal methanogenic archaeabacteria (Methanopyrus) growing at 110° .C. Nature, 342, 833–834.

    CrossRef  ADS  Google Scholar 

  • Huebner, W.F. (1987), First polymer in space identified in comet Halley. Science, 237, 628–630.

    CrossRef  ADS  Google Scholar 

  • Hunten, D.M. (1993), Atmospheric evolution of the terrestrial planets. Science, 259, 915–920.

    ADS  Google Scholar 

  • Ibandov, K.I., Rahmonov, A.A. and Bjasso, A.S. (1991). Laboratory simulation of cometary structures. In R.L. Newburn, M.Neugebauer and R. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II (Dordrecht, Boston), pp. 299–311.

    Google Scholar 

  • Ip, W.H. and Fernández, J.A. (1988), Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus, 74, 47–61.

    CrossRef  ADS  Google Scholar 

  • Irvine, W.M., Leschine, S.N. and Schloerb, F.P. (1980), Thermal history, chemical composition and relatinship of comets to the origin of life, Nature, 283, 748–749.

    CrossRef  ADS  Google Scholar 

  • Irvine, W.M., Schloerb, F.P., Crovisier, J., Fegley, B., Jr., and Mumma, M.J. (2000), Comets: a Link Between Interstellar and Nebular Chemistry, in Protostars and Planets IV, V. Mannings, A. Boss and S. Russell (eds.), Tucson: Univ. Arizona Press, pp. 1159–1200.

    Google Scholar 

  • Jessberger E., Cristoforidis A., and Kissel J. (1988), Aspects of the major element composition of Halley’s dust. Nature, 332, 691–695.

    CrossRef  ADS  Google Scholar 

  • Johnson, M.R., Montero, C.I., Conners, S.B., Shockley, K. R., Pysz, M.A., and Kelly, R.M. (2004) Functional genomic-based studies of the microbial ecology of hyperthermophilic micro-organisms. Biochem. Soc. Trans., 32, 188–192

    CrossRef  Google Scholar 

  • Joss, P.C. (1974), Are stellar surface heavy-elements abundances systematically enhances? Astrophys. Jour., 191, 771–774.

    CrossRef  ADS  Google Scholar 

  • Kamminga H. (1988), Historical perspective: the problem of the origin of life in the context of developments in biology. Origins Life, 18, 1–11.

    CrossRef  Google Scholar 

  • Kandler, O. (1992), Where next with the archaeabacteria? Biochem. Soc. Symp., 58, 195–207.

    Google Scholar 

  • Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s earliest atmosphere. Origins Life, 20, 199–231.

    CrossRef  Google Scholar 

  • Kasting, J.F. (1993), Earth’s earliest atmosphere. Science, 259, 920–926.

    CrossRef  ADS  Google Scholar 

  • Kasting, J. and Catling, D. (2003), Evolution of a Habitable Planet, Ann. Rev. Astron. Astrophys., 41, 429–463.

    CrossRef  ADS  Google Scholar 

  • Kerr, R.A. (1985), Periodic extinctions and impacts challenged. Science, 227, 1451–1453.

    CrossRef  ADS  Google Scholar 

  • Khare, B.N., Sagan, C., Thompson, W.R., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W., Shrader, S., Ogina, H., Willingham, T.O., and Nagy, B. (1984), The Organic aerosols of Titan. Adv. Space Res., 4, (12) 59–68.

    CrossRef  ADS  Google Scholar 

  • Kissel, J., and Krueger, F.R. (1987), The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature, 326, 755–760.

    CrossRef  ADS  Google Scholar 

  • Knoll, A.H. and Barghoorn, E.S. (1977), Archean microfossils showing cell division from the Swaziland system of South Africa. Science, 198, 396–398.

    CrossRef  ADS  Google Scholar 

  • Kondo, Y. and Bruhweiler, F.C. (1985), IUE observations of Beta Pictoris: an IRAS Candidate for a proto-planetary system. Astrophys. Jour. Lett., 391, L1–L5.

    CrossRef  ADS  Google Scholar 

  • Korth, A., Marconi, M.L., Mendis, D.A., Krueger, F.R., Richter, K.A., Lin, R.P., Mitchell, O.L., Andersen, K.A., Carlson, C.W., Réme, H., Savaud, J.A., and d’Uston, C. (1989), Probable detection of organic-dust-borne aromatic CH3H+3 ions in the coma of comet Halley. Nature, 337, 53–55.

    CrossRef  ADS  Google Scholar 

  • Kresák, L. (1978), The Tunguska object: A fragment of comet Encke? Bull. Astron. Inst. Czechosl., 29, 129–134.

    ADS  Google Scholar 

  • Krueger, F.R. and Kissel, J., (1989), Biogenesis by cometary origin: Thermodynamical aspects of self-organization. Origins Life, 19, 87–93.

    CrossRef  Google Scholar 

  • Kuan, Y., Charnley, S.B., Huang, H., Tseng, W., Kisiel, Z. (2003), Interstellar Glycine, Astrophys. J., 593, 848–867.

    CrossRef  ADS  Google Scholar 

  • Lagrange, A.M., Ferlet, R., and Vidal-Majdar, A. (1987), The Beta Pictoris circumstellar disk IV. Redshifted UV lines. Astron. Astrophys., 173, 289–292.

    ADS  Google Scholar 

  • Lagrange-Henri, A.M., Vidal-Majdar, A., and Ferlet, R. (1988), The Beta Pictoris circumstellar disk VI. Evidence for material falling on to the star. Astron. Astrophys., 173, 289–292.

    ADS  Google Scholar 

  • Langevin, Y., Kissel, J., Berhaus, J.L., and Chassefiere, E. (1987), First statistical analysis of 5000 mass spectra of cometary grains obtained by PUMA (Vega 1) and PIA (Giotto) impacto ionization mass spectrometers in the compressed modes. Astron. Astrophys., 187, 761–766.

    ADS  Google Scholar 

  • Lazcano, A. (1992a), Origins of life: The historical development of recent theories. In L. Margulis and L. Olendzenski (eds.), Environmental Evolution: effects of the Origin and Evolution of Life on Planet Earth (MIT Press, Cambridge), pp. 57–59.

    Google Scholar 

  • Lazcano, A. (1992b), La Chispa de la Vida (Pangea, México).

    Google Scholar 

  • Lazcano, A. (1993), The significance of ancient paralogous genes in the study of the early stages of microbial evolution. In R. Guerrero and C. Pedrós-Aliós (eds.). Proceedings of the 6th International Symposium of Microbial Ecology (Soc. Catalana de Biologýa, Barcelona), pp. 559–562.

    Google Scholar 

  • Lazcano, A. (1994a), The transition from non-living to living. In S. Bengston (ed.) Early Life on Earth. Nobel Symposium No. 84 (Columbia University Press, New York), pp 70–80.

    Google Scholar 

  • Lazcano, A. (1994b), The RNA world, its predecessors and descendants. In S. Bengston (ed.), Early Life on Earth. Nobel Symposium No. 84. (Columbia University Press, New York), pp. 70–80.

    Google Scholar 

  • Lazcano, A., Fox, G.E., and Oró, J. (1992), Life before DNA: the origin and evolution of Early Archean cells. In R.P. Mortlock (ed.) The Evolution of Metabolic Function(CRC Press, Boca Raton), pp. 237–295.

    Google Scholar 

  • Lazcano-Araujo, A. and Oró, J. (1981), Cometary material and the origins of life on Earth. In C. Ponnamperuna (ed.) Comets and the Origins of Life (Reidel, Dordrecht), pp. 191–225.

    Google Scholar 

  • Lederberg, J. (1992), Foreword to L. Margulis Symbiosis in Cell Evolution: Microbial communities in the Archean and Proterozoic Eons (Freeman, New York), pp. xv–xvi.

    Google Scholar 

  • Lerner, N.R., Peterson, E., and Chang, S. (1991), Meteoritic amino acids from cometary/interstellar precursors. Comets and the Origins and Evolution of Life. Abstracts of a Meeting in Eau Claire, Wisconsin, Septmeber 30-October 2, 1991, p.19.

    Google Scholar 

  • Levine, J.S., Augustsson, T.R., Boughner, R.E., Natajaran, M., and Sacks, L.J. (1980), Comets and the photochemistry of the paleoatmosphere. In C. Ponnamperuna (ed.) Comets and the Origin of Life (Reidel, Dordrecht), pp. 161–190.

    Google Scholar 

  • Lewis, J.S. (1974), Volatile element influx on Venus from cometary impacts. Earth Planet. Sci. Lett., 22, 239–244.

    CrossRef  ADS  Google Scholar 

  • Löb, W. (1913), Über das Verhalten des Formamids unter der Wirkung der stillen Entladagun. Ein Beilrag zur Frage der Stickstoff-Assimilation. Berichte der Deutschen Chem. Gessellschaft, 46, 648–697.

    Google Scholar 

  • MacMillan, W.D. (1929), The field of cosmogony. Jour. Geol., 37, 341–356.

    CrossRef  ADS  Google Scholar 

  • Maher, K.A. and Stevenson, D.J. (1988), Impact frustration of the origin of life. Nature, 331, 612–614.

    CrossRef  ADS  Google Scholar 

  • Marcus, J.N. and Olsen, M.A. (1991), Biological implications of organic compounds in comets. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II (Dordrecht, Boston), pp. 439–462.

    Google Scholar 

  • Matthews, C.N. and Ludicky, R. (1986), The dark nucleus of comet Halley: Hydrogen cyanide polymers. In B. Battrick, E.J. Rolfe, and R. Reinhard (eds.) 20th ESLAB Symposium on the Exploration of Halley’s Comet (ESA Report SP-250), pp. 273–277.

    Google Scholar 

  • McKay, C.P., Boruki, W.R., Kujiro, D.R., and Church, F. (1989), Shock production of organics during cometary impacts. Lunar Planet. Sci. Conf. XX, 671–672.

    Google Scholar 

  • McKinnon, W.B. (1989), Impacts giveth and impacts taketh away. Nature, 338, 465–466.

    CrossRef  ADS  Google Scholar 

  • Melosh, J. and Vickery, A. (1989), Impact erosion of the primordial Martian atmosphere. Nature, 338, 487–489.

    CrossRef  ADS  Google Scholar 

  • Mennella V, Colangeli L, Bussoletti E, Palumbo P and Rotundi A (1998), A New Approach to the Puzzle of the Ultraviolet Interstellar Extinction Bump. Astrophys. J., 507, L177–180.

    CrossRef  ADS  Google Scholar 

  • Miller, S.L. (1957), The mechanism of synthesis of organic compounds under primitive Earth conditions. In J. Neyman (eds.), The Heritage of Copernicus: Theories “Pleasing to the Mind” (MIT Press, Cambridge), pp. 228–242.

    Google Scholar 

  • Miller, S.L. (1991a), The relative importance of prebiotic synthesison Earth and input from comets and meteorites. In R.A. Wharton, D.T. Anderser, Sara E. Bzik, and J.D. Rummel (eds.). Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life NASA Conference Publication No. 3129 (Washington DC), p. 105.

    Google Scholar 

  • Miller, S.L. (1991b), Comets and meteorites were not a significant surce of organic compounds on the primitive Earth. Comets and the Origins and Evolution of Life. Abstracts of a Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, pp. 22–23.

    Google Scholar 

  • Miller, S.L. and Bada, J.L. (1988), Submarine hot springs and the origin of life. Nature, 334, 609–611.

    CrossRef  ADS  Google Scholar 

  • Miller, S.L. and Lazcano, A. (2002) Formation of the building blocks of life. In J.W. Schopf (ed) Life’s Origin: The beginnings of biological evolution (California University Press, Berkeley), pp.78–112

    Google Scholar 

  • Miller, S.L. and Orgel, L.E. (1974), The Origins of Life on Earth (Prentice Hall, Englewood Cliffs, NJ).

    Google Scholar 

  • Miller, S.L. and Urey, H.C. (1959), Organic compound synthesis on the primitive Earth. Science, 130, 245–252.

    CrossRef  ADS  Google Scholar 

  • Mitchell, D.L., Lin, R.P., Anderson, K.A., Carlson, C.W., Curtis, D.W., Korth, A., Réme, H., Sauvard, J.A., d’Uston, C., and Mendis, D.A. (1987), Evidence for chain molecules enriched in carbon, hydrogen and oxygen in comet Halley. Science, 237, 626–628.

    CrossRef  ADS  Google Scholar 

  • Moreels G., Clairemidi J., Hermine P., Brechignac P. and Rousselot P. (1994), Detection of a polycyclic aromatic molecule in comet P/Halley. Astron. Astrophys., 282, 643–656.

    ADS  Google Scholar 

  • Morrison, D. (1997) The contemporary hazards of cometary impacts. In P.J. Thomas, C.F. Chyba, and C.P. McKay (eds), Comets and the Origin and Evolution of Life. (Springer-Verlag, New York), 243–258.

    Google Scholar 

  • Moulton, F.R. and Chamberlin, T.C. (1900), Certain attempts to test the nebular hypothesis. Science, 11, 311–312.

    Google Scholar 

  • Mukhin, L.M., Gerasimov, M.V. and Safonova, E.N. (1989), Origin of precursors of organic molecules during evaporation of meteorites and rocks. Adv. Space Res., 9, 95–97.

    CrossRef  ADS  Google Scholar 

  • Muller, R.A. (1985), Evidence for a solar companion star. In M.D. Papagiannis (ed), The Search for Extraterrestrial Life: Recent Developments (Reidel, Dordrecht), pp. 233–243.

    Google Scholar 

  • Navarro-González R., Castillo-Rojas, S., and Negrón-Mendoza, A. (1991), Experimental and computational study of the radiation-induced decomposition of formaldehyde. Implications to cometary nuclei. Origins Life, 21, 39–49.

    CrossRef  Google Scholar 

  • Negrón-Mendoza, A., Chacón, E., Navarro-González, R., Draganic, Z.D., and Draganic, I.G. (1992), Radiation-induced synthesis in cometary simulated models. Adv. Space Res., 12, 63–66.

    CrossRef  ADS  Google Scholar 

  • Oberbeck, V.R. and Aggarwal, H. (1992), Comet impacts and chemical evolution of the bombarded Earth. Origins Life, 21, 317–338.

    Google Scholar 

  • Oberbeck, V.R. and Fogelman, G. (1989a), Impacts and the origin of life. Nature, 339, 434.

    CrossRef  ADS  Google Scholar 

  • Oberbeck, V.R. and Fogelman, G. (1989b), Estimates of the maximum time require to originate life. Origins Life, 19, 549–560.

    CrossRef  Google Scholar 

  • Oberbeck, V.R., McKay, C.P., Scattergood, T.W., Carle, G.C., and Valentin, J.R. (1989), The role of cometary particle coalescence in chemical evolution. Origins Life, 19, 35–55.

    Google Scholar 

  • O’Dell, C.R., Wen, Z., and Hu, X. (1993), Discovery of new objects in the Orion Nebula on HST images: shocks, compact sources and protoplanetary disks. Astrophys. Jour., 410, 696–700.

    CrossRef  ADS  Google Scholar 

  • Oparin, A.I. (1924), Proiskhozhdenie Zhizni (Moskovskii Rabochii, Moscow). Translated and published as an Appendix in J.D. Bernal (1967). The Origin of Life(Weidenfeld and Nicolson, London).

    Google Scholar 

  • Oparin, A.I. (1938), The Origin of Life (MacMillan, New York).

    Google Scholar 

  • Oró, J. (1960), Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Comm., 2, 407–412.

    CrossRef  Google Scholar 

  • Oró, J. (1961), Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190, 389–390.

    CrossRef  ADS  Google Scholar 

  • vOró, J. (1963), Synthesis of organic compounds by high-energy electrons. Nature, 197, 971–974.

    CrossRef  ADS  Google Scholar 

  • Oró, J. And Mills, T. (1989), chemical evolution of primitive solar system bodies. Adv. Space Res. 9, 105–120.

    CrossRef  ADS  Google Scholar 

  • Oró, J., Kimball, A., Fritz, R., and Master, F. (1959), Amino acid synthesis from formaldehyde and hydroxylamine. Arch. Biochem. Biophys., 85, 115–130.

    CrossRef  Google Scholar 

  • Oró, J., Holzer, G., and Lazcano-Araujo, A. (1980), The contribution of cometary volatiles to the primitive Earth, Life Science and Space Research XVIII, pp. 67–82.

    Google Scholar 

  • Oró, J., Miller, S.L. and Lazcano, A. (1990), The origin and early evolution of life on Earth. Annu. Rev. Earth Planet Sci., 18, 317–356.

    CrossRef  ADS  Google Scholar 

  • Oró, J., Mills, T., and Lazcano, A. (1992a), The cometary contribution to prebiotic synthesis, Adv. Space Res., 12, 33–41.

    CrossRef  ADS  Google Scholar 

  • Oró, J., Mills, T., and Lazcano, A. (1992b), Comets and the formation of biochemical compounds- a review. Origins Life, 21, 267–277.

    MATH  Google Scholar 

  • Oró, J., Mills, T., and Lazcano, A. (1995), Comets and life in the universe, Adv. Space Res., 15, 81–90.

    ADS  MATH  Google Scholar 

  • Owen, T., Bar-Nun, A. and Kleinfeld, I. (1992), Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars. Nature, 358, 43–46.

    CrossRef  ADS  Google Scholar 

  • Pace, N.R. (1991), Origin of life -Facing up to the physical environment. Cell, 65, 531–533.

    CrossRef  Google Scholar 

  • Pollack, J.P. and Yung, Y.L. (1980), Origin and evolution of planetary atmospheres. Ann. Rev. Earth Planet. Sci., 8, 425–487.

    CrossRef  ADS  Google Scholar 

  • Ponce de Leon, S. and Lazcano, A. (2003) Panspermia–true or false? Lancet, 362, 406–407.

    Google Scholar 

  • Prialnik D., Benkhoff J. and Podolak M. (2004), Modeling Comet Nuclei. In Comets II (M. Festou, H.U. Keller, and H. A. Weaver, eds.), Univ. of Arizona, Tucson, pp. 359–390.

    Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1984), Terrestrial mass extinctions, cometary impacts and the Sun’s motion perpendicular to the galactic plane. Nature, 308, 709–712.

    CrossRef  ADS  Google Scholar 

  • Raup, D.M. (1986), The Nemesis Affair: A Story of the Death of the Dinosaurs and the Ways of Science (W.W.Norton, New York).

    Google Scholar 

  • Raup, D.M. (1988), Extinction in the geological past. In D.E. Osterbrock and P.H. Raven (eds.), Origins and Extinctions (Yale University Press, New Haven), pp. 109–119.

    Google Scholar 

  • Raup, D.M. and Sepkoski, J. Jr. (1984), Periodicity of extinction in the geological past. Proc. Natl. Acad. Sci. USA, 81, 801–805.

    CrossRef  ADS  Google Scholar 

  • Rodgers, S.D. and Charnley, S.B. (2004), Physical Processes and Chemical Reactions in Cometary Comae. In Comets II (M. Festou, H.U. Keller, and H.A. Weaver, eds.), Univ. of Arizona, Tucson, pp. 505–522.

    Google Scholar 

  • Rosing M.T. (1999), 13C depleted carbon microparticles in 3700 Ma seafloor sedimentary rocks from West Greenland, Science, 283, 674–676.

    CrossRef  ADS  Google Scholar 

  • Sagan, C., Thompson, W.R. and Khare, B.N. (1992). A laboratory for prebiological organic chemistry. Accounts of Chemical Research, 25, 286–292.

    CrossRef  Google Scholar 

  • Schopf, W.J. ed (1983), The Earth’s Earliest Biosphere: its origin and evolution(Princeton University Press, Princeton, NJ).

    Google Scholar 

  • Schopf, W.J. (1994), The oldest known records of life: Early Archean stromatolites, microfossils and organic matter. In S. Bengston (ed.), Early Life on Earth. Nobel Symposium No. 84 (Columbia University Press, Princeton, NJ).

    Google Scholar 

  • Schopf, W.J. and Packer, B.M. (1987), Early Archean (3.3 billion to 3.5 billion years-old) microfossils: New evidence of ancient microbes. Science, 237, 70–73.

    CrossRef  ADS  Google Scholar 

  • Schutte, W.A., Allamandola, L.J. and Sandford, S.A. (1992), Laboratory simulation of the photoprocessing and warm-up of cometary and pre-cometary ices: production and analysis of complex organic molecules. Adv. Space Res., 12, 47–51

    CrossRef  ADS  Google Scholar 

  • Schwartz, R.D. and James, P.B. (1984), Periodic mass extinctions and the sun’s oscillation about the galactic plane. Nature, 308, 712–713.

    CrossRef  ADS  Google Scholar 

  • Selsis, F. (2004), The prebiotic atmosphere of the Earth, In Astrobiology: Future Perspectives, eds.: Ehrenfreund, P. et al., Kluwer Academic Publisher, Dortdrecht.

    Google Scholar 

  • Sill, G.T. and Wilkening, L.L. (1978), Ice clathrate as a possible source of the atmospheres of the terrestrial planets. Icarus, 33, 712–713.

    CrossRef  Google Scholar 

  • vSleep, N.H., Zanhle, K.J., Kasting, J.F. and Morowitz, H.J. (1989), Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.

    CrossRef  ADS  Google Scholar 

  • vSlettebak, A. (1975), Some interesting bright southern stars of early type. Astrophys. Jour., 197, 137–138.

    CrossRef  ADS  Google Scholar 

  • Smith, B.A. and Terrile, R.J. (1984), A circumstellar disk around Beta Pictoris. Science, 226, 1421–1424.

    CrossRef  ADS  Google Scholar 

  • Stetter, K.O. (1994), The lesson of Archaebacteria. In S. Bengston (ed.), Early Life on Earth. Nobel Symposium No. 84 (Columbia University Press, New York), pp. 143–151.

    Google Scholar 

  • Steel, D. (1997) Cometary impacts on the biosphere. In P.J. Thomas, C.F. Chyba, and C.P. McKay (eds), Comets and the Origin and Evolution of Life (Springer- Verlag, New York), pp. 209–242

    Google Scholar 

  • Strazzulla, G. and Johnson, R.E. (1991), Irradiation effects on comets and cometary debris. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II (Dordrecht, Boston), 243–275.

    Google Scholar 

  • Stribling, R. and Miller, S.L. (1987), Energy yields for hydrogen cyanide and formaldehyde synthesis: The HCN and amino acid concentrations in the primitive oceans. Origins Life, 17, 261–273.

    CrossRef  Google Scholar 

  • Strom, K., Strom, S.E., Edwards, S., Cabrit, S., and Skrutskie, M.F. (1989), Circumstellar material associated with stellar-type pre-main sequence stars: a possible constraint on the timescale for planet building. Astron. J., 97, 1451–1470.

    CrossRef  ADS  Google Scholar 

  • Suess, H. and Urey, H.C. (1956), Abundances of the elements. Rev. Mod. Phys., 28, 53–62.

    CrossRef  ADS  Google Scholar 

  • Theirstein, H.R. (1980), Cretaceous oceanic catastrophism. Paleobiology, 6, 244–247.

    Google Scholar 

  • Thomas, P.J. (ed) (1992), Comets and the Origin and Evolution of Life. Origins Life, 21, Special Issue.

    Google Scholar 

  • Thomas, P.J. and Brookshaw L. (1997) Numerical models of comet and asteroid impacts. In P.J. Thomas, C.F. Chyba, and C. P. McKay (eds), Comets and the Origin and Evolution of Life (Springer-Verlag, New York), pp. 131–146.

    Google Scholar 

  • Urey, H.C. (1957), The origin of tektites. Nature, 179, 556–557.

    CrossRef  ADS  Google Scholar 

  • Urey, H.C. (1973), Cometary collisions and geological periods. Nature, 242, 32–33.

    CrossRef  ADS  Google Scholar 

  • Vidal-Majdar, A., Hobbs, L.M., Ferlet, R., Gry, C., and Albert, C.E. (1986), the circumstellar gas cloud around Beta Pictoris. II. Astron. Astrophys., 167, 325–332.

    ADS  Google Scholar 

  • Von Helmholtz, H. (1871), The Origin of the Planetary System. In Selected writings of Hermann von Helmholtz (Weslayan University Press, 1971, p. 284) Quotation and reference are from J. Farley (1977). The spontaneous generation controversy: From Descartes to Oparin (John Hopkins University Press, Baltimore), p. 142.

    Google Scholar 

  • Walker, J.C.G. (1986). Impact erosion of planetary atmospheres. Icarus, 68, 87–89.

    CrossRef  ADS  Google Scholar 

  • Westall, F. (2004), Early Life on Earth: the ancient fossil record, In Astrobiology: Future Perspectives, eds.: Ehrenfreund, P. et al., Kluwer Academic Publisher, Dortdrecht.

    Google Scholar 

  • Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets. In Proceedings of the 6th Lunar Science Conference (Lunar and Planetary Institute, Houston), pp. 1539–1561.

    Google Scholar 

  • Wetherill, G.W. (1990), Formation of the Earth. Annu. Rev. Earth Planet. Sci., 18, 205–256.

    CrossRef  ADS  Google Scholar 

  • Whipple, F.L. (1976), A speculation about comets and the Earth. Mem. Soc. Royale Sci. Liege, 9, 101–111.

    ADS  Google Scholar 

  • Whitmire, D.P. and Jackson, A.A. (1984), Are periodic mass extinctions driven by a distant solar companion? Nature, 308, 713–715.

    CrossRef  ADS  Google Scholar 

  • Woese, C.R. (1987), Bacterial evolution. Microbiol. Rev. 51, 221–271.

    Google Scholar 

  • Wöhler, M.F. (1858), Über die Bestandteile des Meteorsteines von Kaba in Ungarn. Sitzber. Akad. Wiss. Wein. Math-Naturwiss. Kl., 33, 205–209.

    Google Scholar 

  • Wöhler, M.F. and Hörnes, M. (1859), Die organische Substanz im Meteorsteine von Kaba. Sitzber. Akad. Wiss. Wein. Math-Naturwiss. Kl., 34, 7–8.

    Google Scholar 

  • Wooden, D.H. (2002), Comet Grains: Their IR Emission and Their Relation to ISM Grains. Earth, Moon, and Planets, 89, 247–287.

    CrossRef  ADS  Google Scholar 

  • Zahnle, K. and Dones, L. (1992), Impact origin of Titan’s atmosphere in Proceedings of the Symposium on Titan, Tolouse, France. (ESA SP-338), 14–25.

    Google Scholar 

  • Zahnle, K. and Grinspoon, D. (1990), Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary. Nature, 348, 157–159.

    CrossRef  ADS  Google Scholar 

  • Zahnle, K.J. and Sleep, N.H. (1997) Impacts and the early evolution of life. In P.J. Thomas, C.F. Chyba, and C.P. McKay (eds), Comets and the Origin and Evolution of Life (Springer-Verlag, New York), pp. 175–208.

    Google Scholar 

  • Zhao, M. and Bada, J.L. (1989), Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Steuns Klint, Denmark. Nature, 339, 463–465.

    CrossRef  ADS  Google Scholar 

  • Zhao, M. and Bada, J.L. (1991), Limitations on impact delivery of organics to the Earth based on extraterrestrial amino acids in K/T boundary sediments. Comets and the Origins and Evolution of Life. Abstracts of a Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Oró, J., Lazcano, A., Ehrenfreund, P. (2006). Comets and the Origin and Evolution of Life. In: Thomas, P.J., Hicks, R.D., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33088-7_1

Download citation