Skip to main content

Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination

  • Chapter
Multi-Objective Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 16))

Abstract

This chapter discusses the behavioral learning of robots from the viewpoint of multiobjective design. Various coordination methods for multiple behaviors have been proposed to improve the control performance and to manage conflicting objectives. We proposed various learning methods for neuro-fuzzy controllers based on evolutionary computation and reinforcement learning. First, we introduce the supervised learning method and evolutionary learning method for multiobjective design of robot behaviors. Then, the multiobjective design of fuzzy spiking neural networks for robot behaviors is presented. The key point behind these methods is to realize the adaptability and reusability of behaviors through interactions with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Morikawa, S. Agarwal, C. Elkan, G. Cottrell. A Taxonomy of Computational and Social Learning. In: Proc. of Workshop on Developmental Embodied Cognition, Edinburgh, 2001.

    Google Scholar 

  2. S.J.Russell and P. Norvig. Artificial Intelligence, Prentice-Hall, Inc., 1995.

    Google Scholar 

  3. R.A. Brooks, Cambrian Intelligence. The MIT Press, 1999.

    Google Scholar 

  4. R. Pfeifer, C. Scheier. Understanding Intelligence, The MIT Press, 1999.

    Google Scholar 

  5. M. Arbib, A. Billard, M. Iacobonni, E. Oztop. Synthetic Brain Imaging: Grasping, Mirror Neurons and Imitation, Neural Networks, 13:975–997, 2000

    Article  Google Scholar 

  6. A. Billard. Imitation: A Means to Enhance Learning of A Synthetic Protolanguage in An Autonomous Robot. In: K. Dautenhahn and C. L. Nehaniv (eds), Imitation in Animals and Artifacts, The MIT Press, Cambridge, pp.281–311, 2002.

    Google Scholar 

  7. P. Andry, P. Gaussier, S. Moga, J.P. Banquet, J. Nadel. Learning and Communication via Imitation: An Autonomous Robot Perspective, IEEE Trans. on Systems, Man, and Cybernetics, 31:431–442, 2001

    Article  Google Scholar 

  8. R.P.N. Rao, A.N. Meltzoff. Imitation Learning in Infants and Robots: Towards Probabilistic Computational Models. In: Proc. of Artificial Intelligence and Simulation of Behaviors, 2003.

    Google Scholar 

  9. S. Nolfi, D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines, The MIT Press, 2000.

    Google Scholar 

  10. G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics, Cambridge University Press, 2000.

    Google Scholar 

  11. J. M. Zurada, R. J. Marks II, C. J. Robinson (eds.). Computational Intelligence - Imitating Life, IEEE Press, 1994.

    Google Scholar 

  12. J. Holland. Adaptation in Natural and Artificial Systems, Ann Arbor:University of Michigan Press, 1975

    Google Scholar 

  13. D.B. Fogel. Evolutionary Computation, New York, IEEE Press, 1995.

    Google Scholar 

  14. D. H. Ballard. An Introduction to Natural Computation, The MIT Press, 1997.

    Google Scholar 

  15. D. E. Rumelhart, J. L. McClelland and the PDP Research Group. Parallel Distributed Processing Explorations in the Microstructure of Cognition. Volume 1: Foundations, The MIT Press, 1986.

    Google Scholar 

  16. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, New York, 2001.

    MATH  Google Scholar 

  17. R.C. Arkin, Behavior-Based Robotics, The MIT Press, 1998.

    Google Scholar 

  18. M. Dorigo and U. Schnepf. Genetics-based Machine Learning and Behaviour Based Robotics: A New Synthesis. IEEE Transactions on Systems, Man, and Cybernetics, 23(1):141–154, 1993.

    Article  Google Scholar 

  19. T. Fukuda, N. Kubota, and T. Arakawa, GA Algorithms in Intelligent Robots. In: Fuzzy Evolutionary Computation, Kluwer Academic Publishers, pp.81–105, 1997.

    Google Scholar 

  20. T. Fukuda, N. Kubota. An intelligent robotic system based on a fuzzy approach. Proceedings of IEEE, 87(9):1448–1470, 1999

    Article  Google Scholar 

  21. T. Fukuda and N. Kubota Fuzzy Control Methodology: Basics and State of Art. In: Soft Computing in Human-Related Sciences, H.N. Teodorescu, A. Kandel, and L.C. Jain (eds.), pp.3–35, 1999.

    Google Scholar 

  22. D.P. Bertsekas, J.N. Tsitsiklis. Neuro-Dynamic Programming, Athena Scientific, 1996.

    Google Scholar 

  23. R.S. Sutton, A.G. Barto. Reinforcement Learning, The MIT Press, 1998.

    Google Scholar 

  24. T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43 (1982) 59–69.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Syswerda. A Study of Reproduction in Generational and Steady-state Genetic Algorithms. In: Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo, 1991.

    Google Scholar 

  26. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Welsey, 1989.

    Google Scholar 

  27. G. Rudolph. Convergence Analysis of Canonical Genetic Algorithm. IEEE Transaction on Neural Network, 5(1):61–101, 1994.

    Google Scholar 

  28. G.J. Klir, B. Yaun (ed.), Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, World Scientific Publishing, 1996.

    Google Scholar 

  29. J.-S.R. Jang, C.-T. Sun, E. Mizutani. Neuro-Fuzzy and Soft Computing, Prentice-Hall, Inc., 1997.

    Google Scholar 

  30. C.C. Lee. Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Part I & Part II, IEEE Trans. on Systems, Man, and Cybernetics, Vol.20, No.2, pp.404–435, 1990.

    Article  MATH  Google Scholar 

  31. S.V. Kartalopoulos. Understanding Neural Networks and Fuzzy Logic, The IEEE Press, 1996.

    Google Scholar 

  32. A. Billard. Imitation. In: M.A. Arbib (ed.), Handbook of Brain Theory and Neural Networks, The MIT Press, Cambridge, pp.566–569, 2002.

    Google Scholar 

  33. G. Rizzolatti, M.A. Arbib. Language within our grasp, Trends in Neuroscience, 21, (1998), 188–194.

    Article  Google Scholar 

  34. A. Anderson, E. Rosenfeld, Neurocomputing, The MIT Press, 1988.

    Google Scholar 

  35. W.T. Miller, R.S. Sutton, P.J. Werbos. Neural Networks for Control, The MIT Press, 1990.

    Google Scholar 

  36. T. Caelli, L. Guan and W. Wen. Modularity in Neural Computing. Proceedings of The IEEE, Vol.87, No.9, pp.1497–1518, 1999.

    Article  Google Scholar 

  37. W. Maass and C.M. Bishop. Pulsed Neural Networks, The MIT Press 1999.

    Google Scholar 

  38. D. Floreano, J.C. Zufferey, and C. Mattiussi. Evolving Spiking Neurons from Wheels to Wings. In: Dynamic Systems Approach for Embodiment and Sociality, K. Murase and T. Asakura (eds.), Magill, Advanced Knowledge International, International Series on Advanced Intelligence, Vol 6, pp. 65–70, 2003.

    Google Scholar 

  39. D. Floreano, C. Mattiussi. Evolution of Spiking Neural Controllers for Autonomous Vision-based Robots. In: T. Gomi (ed.), Evolutionary Robotics IV, Berlin: Springer-Verlag, 2001.

    Google Scholar 

  40. J. Urzelai and D. Floreano. Evolution of Adaptive Synapses: Robots with Fast Adaptive Behavior in New Environments. Evolutionary Computation, 9, 495–524, 2001.

    Article  Google Scholar 

  41. H. Burgsteiner. Training networks of biological realistic spiking neurons for real-time robot control. In:Proceedings of the 9th International Conference on Engineering Applications of Neural Networks, Elsevier Publishing, 2005.

    Google Scholar 

  42. N. Kubota. Intelligent Structured Learning for A Robot Based on Perceiving- Acting Cycle. In: Proc. of the Twelfth Yale Workshop on Adaptive and Learning Systems, pp.199–206, 2003.

    Google Scholar 

  43. Y. Nojima, F. Kojima, and N. Kubota. Local Episode-based Learning of A Mobile Robot in A Dynamic Environment. Proc. of The Third International Symposium on Human and Artificial Intelligence Systems (HART2002), pp.384–388, 2002.

    Google Scholar 

  44. N. Kubota, T. Morioka, F. Kojima, T. Fukuda. Learning of Mobile Robots Using Perception-Based Genetic Algorithm, Measurement, 29, 237–248, 2001.

    Article  Google Scholar 

  45. N. Kubota, H. Sasaki. Spiking Neural Network for Behavior Learning of A Mobile Robot.In: Proc. of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment, pp.267–272, 2005.

    Google Scholar 

  46. N. Kubota, K. Tomoda. Behavior Coordination of A Partner Robot based on Imitation. In: Proc. of 2nd International Conference on Autonomous Robots and Agents, pp.164–169, 2004.

    Google Scholar 

  47. N. Kubota, K. Nishida. Fuzzy Computing for Communication of A Partner Robot Based on Imitation, In: Proc. (CD-ROM) of 2005 IEEE International Conference on Robotics and Automation, pp.4391–4396, 2005.

    Google Scholar 

  48. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester, UK, 2001

    MATH  Google Scholar 

  49. A.M.S. Zalzala, M.C. Ang, M. Chen, A.S. Rana and Q. Wang. Evolutionary algorithms for robotic systems: principles and implementations. In: A.M.S. Zalzala and P.J. Fleming (editors), Genetic Algorithms in Engineering Systems, Chapter 8, pp. 161–202, IEEE Press. Control Engineering Series 55, Bath, UK, 1997.

    Google Scholar 

  50. J.-Y. Donnart and J.-A. Meyer. Learning Reactive and Planning Rules in a Motivationally Autonomous Animat. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 26(3), 381–395, 1996.

    Article  Google Scholar 

  51. D. Floreano and F. Mondada. Evolutionary Neurocontrollers for Autonomous Mobile Robots. Neural Networks, 11, 1461–1478, 1998.

    Article  Google Scholar 

  52. S.-B. Cho and G.-B. Song. Evolving CAM-Brain to control a mobile robot. Applied Mathematics and Computation, vol. 111, no. 2–3, pp. 147–162, 2000.

    Article  MATH  Google Scholar 

  53. S. Nolfi. Using emergent modularity to develop control systems for mobile robots. Adaptive Behavior, 5:343–363, 1997.

    Article  Google Scholar 

  54. I. Harvey, P. Husbands, D. Cliff, A. Thompson and N. Jakobi. Evolutionary Robotics: The Sussex Approach. In: Robotics and Autonomous Systems, 20:205–224, 1997.

    Article  Google Scholar 

  55. L.S. Teo, M. Khalid, and R. Yusof. Tuning of a Neuro-Fuzzy Controller designed by Genetic Algorithms. IEEE Trans on Systems, Man and Cybernetics, 29(2):226–236, April, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kubota, N. (2006). Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination. In: Jin, Y. (eds) Multi-Objective Machine Learning. Studies in Computational Intelligence, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33019-4_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-33019-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30676-4

  • Online ISBN: 978-3-540-33019-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics