Skip to main content

Equation of state of strongly interacting matter in compact stars

  • Conference paper
  • First Online:
The 2nd International Conference on Nuclear Physics in Astrophysics
  • 439 Accesses

Abstract

We study the equation of state of strongly interacting matter at large densities and vanishing temperature. The hadronic matter equation of state is computed in a relativistic mean-field model and the quark matter equation of state is computed using a NJL-type model which takes into account the possibility of formation of the gapless color flavor locked phase. We focus in particular on the possible phase transition from hadronic matter to quark matter using both Maxwell and Gibbs constructions. We finally discuss the relevance of the equation of state in the context of compact stars and we propose some astrophysical signatures of the presence of quark matter in compact stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971).

    Article  ADS  Google Scholar 

  2. J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973).

    Article  ADS  Google Scholar 

  3. K. Rajagopal, F. Wilczek, hep-ph/0011333 (2000).

    Google Scholar 

  4. B.D. Serot, J.D. Walecka, Phys. Lett. B 87, 172 (1979).

    Article  ADS  Google Scholar 

  5. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991).

    Article  ADS  Google Scholar 

  6. N. Glendenning, Compact Stars (Springer-Verlag, 1997).

    Google Scholar 

  7. G. Baym, S.A. Chin, Phys. Lett. B 62, 241 (1976).

    Article  ADS  Google Scholar 

  8. K. Schertler, S. Leupold, J. Schaffner-Bielich, Phys. Rev. C 60, 025801 (1999).

    Article  ADS  Google Scholar 

  9. A. Drago, U. Tambini, M. Hjorth-Jensen, Phys. Lett. B 380, 13 (1996).

    Article  ADS  Google Scholar 

  10. B.C. Barrois, Nucl. Phys. B 129, 390 (1977).

    Article  ADS  Google Scholar 

  11. D. Bailin, A. Love, Phys. Rep. 107, 325 (1984).

    Article  ADS  Google Scholar 

  12. M.G. Alford, K. Rajagopal, F. Wilczek, Nucl. Phys. B 537, 443 (1999).

    Article  ADS  Google Scholar 

  13. K. Rajagopal, F. Wilczek, Phys. Rev. Lett. 86, 3492 (2001).

    Article  ADS  Google Scholar 

  14. M. Alford, C. Kouvaris, K. Rajagopal, Phys. Rev. Lett. 92, 222001 (2004).

    Article  ADS  Google Scholar 

  15. M. Alford, C. Kouvaris, K. Rajagopal, Phys. Rev. D 71, 054009 (2005).

    Article  ADS  Google Scholar 

  16. K. Fukushima, C. Kouvaris, K. Rajagopal, Phys. Rev. D 71, 034002 (2005).

    Article  ADS  Google Scholar 

  17. S.B. Ruster, I.A. Shovkovy, D.H. Rischke, Nucl. Phys. A 743, 127 (2004).

    Article  ADS  Google Scholar 

  18. S.B. Ruster, V. Werth, M. Buballa, I.A. Shovkovy, D.H. Rischke, hep-ph/0503184 (2005).

    Google Scholar 

  19. D. Blaschke, S. Fredriksson, H. Grigorian, A.M. Oztas, F. Sandin, hep-ph/0503194 (2005).

    Google Scholar 

  20. A. Lavagno, G. Pagliara, nucl-th/0504066 (2005).

    Google Scholar 

  21. A. Drago, A. Lavagno, G. Pagliara, Phys. Rev. D 69, 057505 (2004).

    Article  ADS  Google Scholar 

  22. H. Grigorian, D. Blaschke, D. Voskresensky, Phys. Rev. C 71, 045801 (2005).

    Article  ADS  Google Scholar 

  23. A. Drago, A. Lavagno, G. Pagliara, Phys. Rev. D 71, 103004 (2005).

    Article  ADS  Google Scholar 

  24. N. Andersson, D.I. Jones, K.D. Kokkotas, Mon. Not. R. Astron. Soc. 337, 1224 (2002).

    Article  ADS  Google Scholar 

  25. A. Drago, G. Pagliara, Z. Berezhiani, gr-qc/0405145 (2004).

    Google Scholar 

  26. Z. Berezhiani et al., Astrophys. J. 586, 1250 (2003).

    Article  ADS  Google Scholar 

  27. S.E. Woosley, A. Heger, T.A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Lavagno, A., Pagliara, G. (2006). Equation of state of strongly interacting matter in compact stars. In: Fülöp, Z., Gyürky, G., Somorjai, E. (eds) The 2nd International Conference on Nuclear Physics in Astrophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32843-2_44

Download citation

  • DOI: https://doi.org/10.1007/3-540-32843-2_44

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32842-1

  • Online ISBN: 978-3-540-32843-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics