Skip to main content

Breakup of loosely bound nuclei as indirect method in nuclear astrophysics: 8B, 9C, 23Al

  • Conference paper
  • First Online:
The 2nd International Conference on Nuclear Physics in Astrophysics
  • 443 Accesses

Abstract

We discuss the use of one-nucleon breakup reactions of loosely bound nuclei at intermediate energies as an indirect method in nuclear astrophysics. These are peripheral processes, therefore we can extract asymptotic normalization coefficients (ANC) from which reaction rates of astrophysical interest can be inferred. To show the usefulness of the method, three different cases are discussed. In the first, existing experimental data for the breakup of 8B at energies from 30 to 1000 MeV/u and of 9C at 285 MeV/u on light through heavy targets are analyzed. Glauber model calculations in the eikonal approximation and in the optical limit using different effective interactions give consistent, though slightly different results, showing the limits of the precision of the method. The results lead to the astrophysical factor S 17(0) = 18.7 ± 1.9 eV · b for the key reaction for solar neutrino production 7Be(p, γ)8B. It is consistent with the values from other indirect methods and most direct measurements, but one. Breakup reactions can be measured with radioactive beams as weak as a few particles per second, and therefore can be used for cases where no direct measurements or other indirect methods for nuclear astrophysics can be applied. We discuss a proposed use of the breakup of the proton drip line nucleus 23Al to obtain spectroscopic information and the stellar reaction rate for 22Mg(p, γ)23Al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.N. Bahcall, M.H. Pinsoneault, S. Basu, Astrophys. J. 555, 990 (2001).

    Article  ADS  Google Scholar 

  2. M. Wiescher et al., Astrophys. J. 343, 352 (1989).

    Article  ADS  Google Scholar 

  3. L. Trache, F. Carstoiu, C.A. Gagliardi, R.E. Tribble, Phys. Rev. Lett. 87, 271102 (2001).

    Article  ADS  Google Scholar 

  4. L. Trache et al., Phys. Rev. C 66, 035801 (2002).

    Article  ADS  Google Scholar 

  5. L. Trache, F. Carstoiu, C.A. Gagliardi, R.E. Tribble, Phys. Rev. C 69, 032802(R) (2004).

    Article  ADS  Google Scholar 

  6. F. Negoita et al., Phys. Rev. C 54, 1787 (1996).

    Article  ADS  Google Scholar 

  7. B. Blank et al., Nucl. Phys. A 624, 242 (1997).

    Article  ADS  Google Scholar 

  8. J. Enders et al., Phys. Rev. C 67, 064301 (2003).

    Article  ADS  Google Scholar 

  9. R. Warner et al., to be published in Phys. Rev. C.

    Google Scholar 

  10. D. Cortina-Gil et al., Nucl. Phys. A 720,3 (2003).

    Article  ADS  Google Scholar 

  11. I. Tanihata, J. Phys. G 22, 157 (1996).

    Article  ADS  Google Scholar 

  12. P.G. Hansen, B.M. Sherrill, Nucl. Phys. A 693, 133 (2001).

    Article  ADS  Google Scholar 

  13. A.M. Mukhamedzhanov et al., Phys. Rev. C 63, 024612 (2001).

    Article  ADS  Google Scholar 

  14. E. Sauvan et al., Phys. Lett. B 491, 1 (2000); Phys. Rev. C 69, 044603 (2004).

    Article  ADS  Google Scholar 

  15. J.P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rev. C 16, 80 (1977).

    Article  ADS  Google Scholar 

  16. L. Trache et al., Phys. Rev. C 61, 024612 (2000).

    Article  ADS  Google Scholar 

  17. L. Ray, Phys. Rev. C 20, 1857 (1979).

    Article  ADS  Google Scholar 

  18. A. Azhari et al., Phys. Rev. Lett. 82, 3960 (1999).

    Article  ADS  Google Scholar 

  19. G. Tabacaru et al., Phys. Rev. C 73, 025808 (2006).

    Article  ADS  Google Scholar 

  20. F. Schumann et al., Phys. Rev. Lett. 90, 232501 (2003) and references therein.

    Article  ADS  Google Scholar 

  21. B. Davids, S. Typel, Phys. Rev. C 68, 045802 (2003).

    Article  ADS  Google Scholar 

  22. F. Hammache et al., Nucl. Phys. A 746, 370c (2004).

    Article  ADS  Google Scholar 

  23. A.R. Junghans et al., Phys. Rev. C 68, 065803 (2003).

    Article  ADS  Google Scholar 

  24. R.H. Cyburt, B. Davids, B.K. Jennings, Phys. Rev. C 70, 045501 (2004).

    Article  ADS  Google Scholar 

  25. F. Strieder et al., Eur. Phys. J. A 3, 1 (1998).

    Article  ADS  Google Scholar 

  26. H. Esbensen, G.F. Bertsch, K.A. Snover, Phys. Rev. Lett. 94, 042502 (2005).

    Article  ADS  Google Scholar 

  27. C. Bertulani, Phys. Rev. Lett. 94, 072701 (2005).

    Article  ADS  Google Scholar 

  28. D. Beaumel et al., Phys. Lett. B 514, 226 (2001).

    Article  ADS  Google Scholar 

  29. T. Motobayashi, Nucl. Phys. A 718, 101c (2002); RIKEN Accelerator Progress Report 1999, 33, 64 (2000) and 2002, 36, 64 (2003).

    Article  ADS  Google Scholar 

  30. S. Starrfield, J.W. Truran, M. Wiescher, W.M. Sparks, Mon. Not. R. Astron. Soc. 296, 502 (1998).

    Article  ADS  Google Scholar 

  31. J. Jose, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999).

    Article  ADS  Google Scholar 

  32. S. Wanajo, M. Hashimoto, K. Homono, Astrophys. J. 523, 409 (1999)

    Article  ADS  Google Scholar 

  33. I. Iyundin et al., Astron. Astrophys. 300, 422 (1995).

    ADS  Google Scholar 

  34. R. Diehl, Nucl. Phys. A 718, 52c (2003) and references therein.

    Article  ADS  Google Scholar 

  35. M. Wiescher et al., Nucl. Phys. A 484, 90 (1988).

    Article  ADS  Google Scholar 

  36. J. Caggiano et al., Phys. Rev. C 64, 025802 (2001).

    Article  ADS  Google Scholar 

  37. X.Z. Cai et al., Phys. Rev. C 65, 024610 (2002).

    Article  ADS  Google Scholar 

  38. H.-Y. Zhang et al., Chin. Phys. Lett. 19, 1599 (2002); 20, 46; 1234 (2003).

    Article  ADS  Google Scholar 

  39. National Nuclear Data Center, BNL. http://www.nndc.bnl.gov.

  40. M. Beiner, R.J. Lombard, Ann. Phys. (N.Y.) 86, 262 (1974).

    Article  ADS  Google Scholar 

  41. T. Gomi et al., Nucl. Phys. A 718, 508c (2003); 734, Suppl. 1, E77 (2004); 758, 761c (2005).

    Article  ADS  Google Scholar 

  42. V. Maddalena et al., Phys. Rev. C 63, 024613 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Trache, L., Carstoiu, F., Gagliardi, C.A., Tribble, R.E. (2006). Breakup of loosely bound nuclei as indirect method in nuclear astrophysics: 8B, 9C, 23Al. In: Fülöp, Z., Gyürky, G., Somorjai, E. (eds) The 2nd International Conference on Nuclear Physics in Astrophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32843-2_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-32843-2_37

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32842-1

  • Online ISBN: 978-3-540-32843-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics