Skip to main content

The Structure and Dynamics of Complex Product Design

  • Chapter
Complex Engineered Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The usefulness of understanding organizational network structure as a tool for assessing the effects of decisions on organizational performance has been illustrated in the social science and management literatures [39-42]. There it has been shown that informal networks of relationships (e.g., communication, information, and problemsolving networks) – rather than formal organizational charts – determine to a large extent the patterns of coordination and work processes embedded in the organization. In recent years, networks have also become the foundation for understanding numerous and disparate complex systems outside the field of social sciences (e.g., biology, ecology, engineering, and internet technology, see [9, 10, 49]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Alexander, Notes on the Synthesis of Form (Harvard University Press, Cambridge, MA, 1964).

    Google Scholar 

  2. D. Braha and O. Maimon, A Mathematical Theory of Design: Foundations, Algorithms, and Applications (Kluwer Academic Publishers, Boston, MA, 1998).

    MATH  Google Scholar 

  3. A. Yassine, and D. Braha, “Complex Concurrent Engineering and the Design Structure Matrix Method,” Concurrent Engineering, September 2003, vol. 11, no. 3, pp. 165–176.

    Article  Google Scholar 

  4. M. Klein, H. Sayama, P. Faratin and Y. Bar-Yam, “The Dynamics of Collaborative Design: Insights from Complex Systems and Negotiation Research,” Concurrent Engineering, September 2003, vol. 11, no. 3, pp. 201–209.

    Article  Google Scholar 

  5. A. Yassine, N. Joglekar, D. Braha, S. Eppinger and D. Whitney, Information Hiding in Product Development: The Design Churn Effect. Research in Engineering Design. Vol. 14 (3). 131–144.

    Google Scholar 

  6. S. M. Osborne, Product Development Cycle Time Characterization Through Modeling of Process Iteration. MSc. Thesis, Massachusetts Institute of Technology, 1993.

    Google Scholar 

  7. K. B. Clark, “Project scope and project performance: the effect of parts strategy and supplier involvement on product development,” Management Science 35 (10), 1247–1263 (1989).

    Article  Google Scholar 

  8. S. H. Strogatz, “Exploring Complex Networks,” Nature 410, 268–276 (2001).

    Article  ADS  Google Scholar 

  9. R. Albert and Barabási, A.-L., “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics 74, 47–97 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  10. M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review 45, 167–256 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the World Wide Web,” Nature 401, 130–131 (1999).

    Article  ADS  Google Scholar 

  12. M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relationships of the Internet Topology,” Comp. Comm. Rev. 29, 251–262 (1999).

    Article  Google Scholar 

  13. D. J. Watts, and S.H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature 393, 440–442 (1998).

    Article  ADS  Google Scholar 

  14. H. Jeong, B. Tombor, R. Albert, Z. N. Oltavi, and A.-L. Barabási, “The Large-Scale Organization of Metabolic Networks,” Nature 407, 651–654 (2000).

    Article  ADS  Google Scholar 

  15. H. Jeong, S. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and Centrality in Protein Networks,” Nature 411, 41–42 (2001).

    Article  ADS  Google Scholar 

  16. J. M. Montoya and R. V. Solé, “Small World patterns in Food Webs,” J. Theor. Bio. 214, 405–412 (2002).

    Article  Google Scholar 

  17. L. A. N. Amaral, A. Scala, M. Barthélémy and H. E. Stanley, “Classes of Small-World Networks,” Proc. Nat. Ac. Sci USA 97, 11149–11152 (2000).

    Article  ADS  Google Scholar 

  18. M. E. J. Newman, “The Structure of Scientific Collaboration Networks,” Proc. Nat. Ac. Sci USA 98, 404–409 (2001).

    Article  MATH  ADS  Google Scholar 

  19. M. E. J. Newman, “Scientific Collaboration Networks. I. Network Construction and Fundamental Results,” Phys. Rev. E 64, 016131 (2001).

    Article  ADS  Google Scholar 

  20. M. E. J. Newman, “Scientific Collaboration Networks. II. Shortest Paths, Weighted Networks, and Centrality,” Phys. Rev. E 64, 016132 (2001).

    Article  ADS  Google Scholar 

  21. D. J. de S. Price, “Networks of Scientific Papers,” Science 149, 510–515 (1965).

    Article  ADS  Google Scholar 

  22. R. Ferrer, C. Janssen, and R. V. Solé, “Topology of Technology Graphs: Small World Patterns in Electronic Circuits,” Phys. Rev. E 63, 32767 (2001).

    Google Scholar 

  23. S. Valverde, R. F. Cancho, and R. V. Solé, “Scale Free Networks from Optimal Design,” Europhys. Lett. 60, 512–517 (2002).

    Article  ADS  Google Scholar 

  24. R. Albert, H. Jeong, and A.-L. Barabási, “Error and Attack Tolerance in Complex Networks,” Nature 406, 378–382 (2000).

    Article  ADS  Google Scholar 

  25. S.D. Eppinger, D.E. Whitney, R.P. Smith, and D.A. Gebala, “A Model-Based Method for Organizing Tasks in Product Development,” Research in Engineering Design 6 (1), 1–13 (1994).

    Article  Google Scholar 

  26. D.V. Steward, “The Design Structure System: A Method for Managing the Design of Complex Systems,” IEEE Transactions on Engineering Management 28, 71–74 (1981).

    Google Scholar 

  27. R. F. Cancho, and R. V. Solé, SFI Working Paper 01–11–068 (2001).

    Google Scholar 

  28. H. A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, MA, 1998).

    Google Scholar 

  29. A.-L. Barabási, and R. Albert, “Emergence of Scaling in Random Networks,” Science 286, 509–512 (1999).

    Article  MathSciNet  Google Scholar 

  30. Note that a power-law distribution of the in-degree distribution (respectively, the outdegree distribution) p in(k)~k-γin with exponent γin translates into a power-law distribution of the cumulative probability distribution P in(k)~∞∑aLk=kk-γin ~k-(γin-1) with exponent γin-1.

    Google Scholar 

  31. S. Mossa, M. Barthélémy, H. E. Stanley, and L. A. N. Amaral, “Truncation of Power Law Behavior in “Scale-Free” Network Models due to Information Filtering,” Phys. Rev. Lett. 88, 138701 (2002).

    Article  ADS  Google Scholar 

  32. B. Shargel, H. Sayama, I. R. Epstein and Y. Bar-Yam, “Optimization of Robustness and Connectivity in Complex Networks,” Phys. Rev. Lett. 90 (6), 068701 (2003).

    Article  ADS  Google Scholar 

  33. A. Cividanes, private communication. See also A. Cividanes, MSc. Thesis, Mechanical Engineering Department, Massachusetts Institute of Technology, 2002. A complete description of the tasks, the list of interviewees, and the result of the survey are available at http://necsi.org/projects/braha/largescaleengineering.html. For further details regarding the data collection process at GM's Research & Development Center see Cividanes's thesis.

    Google Scholar 

  34. S. Denker, private communication; Available at http://necsi.org/projects/braha/largescaleengineering. html

    Google Scholar 

  35. A. Newton and S. Austin, private communication; Available at http://necsi.org/projects/ braha/argescaleengineering.html

    Google Scholar 

  36. For a detailed description of data flow and design-process model diagrams see S. Austin, A. Baldwin, B. Li and P. Waskett, “Analytical Design Planning Technique: A Model of the Detailed Building Design Process,” Design Studies 20 (3), 279–296 (1999).

    Article  Google Scholar 

  37. S. Austin, A. Baldwin, B. Li and P. Waskett, “Integrating Design in the Project Process,” Proceedings of the Institution of Civil Engineers, 138 (4), 177–182 (2000).

    Google Scholar 

  38. Braha, D. and Bar-Yam Y. “Topology of Large-Scale Engineering Problem-Solving Networks.” Physical Review E. Vol. 69, 016113, January 2004.

    Article  ADS  Google Scholar 

  39. Cross, R., Borgatti, S. P., and Parker A. “Making Invisible Work Visible: Using Social Network Analysis to Support Strategic Collaboration,” California Management Review, 44/2 (Winter 2002): 25–46.

    Google Scholar 

  40. M. Granovetter, “The Strength of Weak Ties,” American Journal of Sociology, 78, 1360–1380 (1973).

    Article  Google Scholar 

  41. D. Krackhardt, and J.R. Hanson, “Informal Networks: The Company behind the Chart,” Harvard Business Review, 71 (4), 104–111 (1993).

    Google Scholar 

  42. S. Wasserman, and K. Faust, Social Network Analysis (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  43. Reitman, V. “Toyota's Fast Rebound,” Wall Street Journal, May 8, 1997.

    Google Scholar 

  44. Nishiguchi, T and Beaudet, A. The Toyota Group and the Aisin Fire. Sloan Management Review, Fall, 1998.

    Google Scholar 

  45. J. Mihm, C. H. Loch, A. Huchzermeier, “Problem -Solving Oscillations in Complex Projects” Management Science 49 (6), 733–750 (2003).

    Article  Google Scholar 

  46. Erdös, P. and Rényi, A. “On random graphs,” Publicationes Mathematicae 6, 290–297 (1959).

    MATH  Google Scholar 

  47. J. Marro, and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  48. Bar-Yam, Y. and Epstein, I. R. “Response of complex networks to stimuli,” Proceedings of the National Academy of Sciences 101, pp. 4341–4345 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Y. Bar-Yam, Dynamics of Complex Systems (Perseus Books, Reading MA, 1997).

    MATH  Google Scholar 

  50. Braha, D. and Bar-Yam Y. “The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results,” NECSI Technical Report 2004–09-01, September 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Braha, D., Bar-Yam, Y. (2006). The Structure and Dynamics of Complex Product Design. In: Braha, D., Minai, A., Bar-Yam, Y. (eds) Complex Engineered Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32834-3_3

Download citation

Publish with us

Policies and ethics