Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 696))

Abstract

During and since the second half of the twentieth century, enormous progress has been made in understanding our universe in terms of fundamental particles and their interactions, namely in the language of quantum field theory. The advent of the standard model (SM) of particle physics has been the culmination of quantum field theory in all its full glory. The dawn of this successful particle physics era was opened with the unexpected discovery of parity violation in weak interaction phenomena [1]. It had long been known that weak interactions change the electromagnetic charge, i.e. electron (e) to electron type neutrino (νe), neutron (n) to proton (p). But, until the mid-1950s it had never occurred to the leading minds [2] that “parity might be violated”, chiefly because the atomic and nuclear transitions did not reveal any such possibility before that time. For nuclear transitions, both weak and electromagnetic phenomena contribute but at that time there were not sufficient data to fully conclude on the nature of parity operation in weak interactions [1]. For atomic transitions, the fundamental interaction is of electromagnetic origin and the experimental confirmation of parity conservation in atomic phenomena convinced most physicists that parity is conserved in the universe. In hindsight, parity conservation should have been imposed only on electromagnetic interactions, as the discovery of parity violation in weak interactions started a new era for weak interactions. There is still no experimental evidence that strong and electromagnetic interactions violate parity. Therefore, we know that parity violation in weak interactions is at the heart of making our universe as it is now, because the SM assumes from the outset the existence of massless chiral fields.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. D. Lee and C. N. Yang, Phys. Rev. 104 (1956) 254.

    Article  ADS  Google Scholar 

  2. W. Pauli, “General remarks on parity nonconservation”, Talk at Conf. on Nuclear Structure 416 (Rehovoth, 1957), in Wolfgang Pauli, ed. C. P. Enz and K. v. Meyenn, p. 481–483.

    Google Scholar 

  3. R. Feynman and M. Gell-Manni, Phys. Rev. 109 (1958) 193; E. C. G. Sudarshan and R. Marshak, Phys. Rev. 109 (1958) 1860.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. T. D. Lee and C. N. Yang, Phys. Rev. 119 (1960) 1410.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. H. Weyl, Sitzungsher. d. Berlin Akad. 1918 (1918) 465.

    MATH  Google Scholar 

  6. S. L. Glashow, Nucl. Phys. 22, (1961) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; Abdus Salam, in Elementary Particle Theory, ed. N. Svartholm (Almqvist and Wiksells, Stockholm, 1969), p. 367.

    Article  Google Scholar 

  7. J. Pati and Abdus Salam, Phys. Rev. D8 (1973) 1240.

    ADS  Google Scholar 

  8. Weinberg and Salam, in [6].

    Google Scholar 

  9. L. Susskind, Phys. Rev. D20 (1979) 2619; S. Weinberg, Phys. Rev. D19 (1979) 1277.

    ADS  Google Scholar 

  10. P. W. Higgs, Phys. Lett. B12 (1964) 132; Phys. Rev. Lett. 13 (1964) 508; F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; G. S. Guralnick, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13 (1964) 585.

    Google Scholar 

  11. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.

    Article  ADS  Google Scholar 

  12. H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.

    Article  ADS  Google Scholar 

  13. H. Georgi, Nucl. Phys. B156 (1979) 126.

    Article  MathSciNet  ADS  Google Scholar 

  14. Th. Kaluza, Sitzungsher. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966–972; O. Klein, Z. f. Physik, 37 (1926) 895; Nature 118 (1926) 516.

    MATH  Google Scholar 

  15. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. E. Witten, “Fermion quantum numbers of Kaluza-Klein theory”, in Proc. of Shelter Island II Conference, Shelter Island, N.Y., Jan. 1–3, 1983, ed. R. Jackiw, N. N. Khuri, S. Weinberg, and E. Witten (MIT Press, 1985) p. 369.

    Google Scholar 

  17. P. Frampton and T. W. Kephart, Phys. Rev. D28 (1983) 1010.

    ADS  Google Scholar 

  18. L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234 (1984) 269.

    Article  MathSciNet  ADS  Google Scholar 

  19. M. B. Green and J. Schwarz, Phys. Lett. B149 (1984) 117.

    MathSciNet  ADS  Google Scholar 

  20. D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Phys. Rev. Lett. 54 (1985) 502; Nucl. Phys. B256 (1985) 253.

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258 (1985) 46.

    Article  MathSciNet  ADS  Google Scholar 

  22. L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl. Phys. B261 (1985) 678; Nucl. Phys. B274 (1986) 285; L. Ibañez, H. P. Nilles, and F. Quevedo, Phys. Lett. B187 (1987) 25.

    Article  MathSciNet  ADS  Google Scholar 

  23. I. Antoniadis, C. P. Bachas, and C. Kounnas, Nucl. Phys. B289 (1987) 87.

    Article  MathSciNet  ADS  Google Scholar 

  24. W. Lerche, D. Lüst, and A. N. Schellekens, Nucl. Phys. B287 (1987) 477.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Choi, KS., Kim, J.E. (2006). Introduction and Summary. In: Quarks and Leptons From Orbifolded Superstring. Lecture Notes in Physics, vol 696. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32764-9_1

Download citation

Publish with us

Policies and ethics