Skip to main content

The Rheology of Foams

  • Conference paper

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 133))

Abstract

We review recent progress concerning an understanding of the rheological properties of foams, both in bulk form and confined in narrow channels, and including the problem of foam sliding along a solid wall. Our calculations contribute not only to the interpretation of rheological data, but also to the coupling of foam drainage and rheology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weaire D, Hutzler S (1999) The physics of foams. Clarendon Press, Oxford

    Google Scholar 

  2. Kraynik AM (1998) Foam Flows. Ann Rev Fluid Mech 20:325–357

    Article  Google Scholar 

  3. Drenckhan W, Cox SJ, Delaney G, Holste H, Weaire D, Kern N (2005) Rheology of ordered foams — on the way to Discrete Microfluidics. Colloids and Surfaces A: Physicochem Eng Aspects 263:52–64

    Article  CAS  Google Scholar 

  4. Kern N, Weaire D, Martin A, Hutzler S, Cox SJ (2004) The two-dimensional viscous froth model for foam dynamics. Physical Review E 70:041411 (13 pages)

    Article  CAS  Google Scholar 

  5. Durand J (2000) Sands, Powders and grains: an introduction to the physics of granular materials. Springer, New York

    Google Scholar 

  6. Reynolds O (1885) Proc Brt Assoc p 896, Proc R Instn GB, presented February 12

    Google Scholar 

  7. Weaire D, Hutzler S (2003) Dilatancy in liquid foams. Philosophical Magazine 83:2747–2760

    Article  CAS  Google Scholar 

  8. Marze SPL, Saint-Jalmes A, Langevin D (2005) Protein and surfactant foams: linear rheology and dilatancy effect. Colloids and Surfaces A: Physicochem Eng Aspects 263:121–128

    Article  CAS  Google Scholar 

  9. Princen HM, Kiss D (1989) Rheology of foams and highly concentrated emulsions. VI. An experimental study of the shear viscosity and yield stress of concentrated emulsions. J Coll Int Sci 121:176–187

    Article  Google Scholar 

  10. Rioual F, Hutzler S, Weaire D (2005) Elastic dilatancy in wet foams: a simple model. Colloids and Surfaces A: Physicochem Eng Aspects 263:117–120

    Article  CAS  Google Scholar 

  11. Kermode JP, Weaire D (1983) Computer simulation of a two-dimensional soap froth. 1. Method and motivation. Phil Mag B 48:245–259

    Google Scholar 

  12. Hutzler S, Weaire D, Bolton F (1995) The effects of Plateau borders in the two-dimensional soap froth, III. Further results. Phil Mag B 71:277–289

    CAS  Google Scholar 

  13. Kraynik AM, Neilsen MK, Reinelt DA, Warren WE (1999) Foam Micromechanics. In: Sadoc JF, Rivier N (eds) Foams and Emulsions. Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  14. Brakke K (1992) The Surface Evolver. Experimental Mathematics 1:141–165

    Google Scholar 

  15. Lauridsen J, Twardos M, Dennin M (2002) Shear-induced stress relaxation in a two-dimensional wet foam. Phys Rev Lett 89:098303

    Article  CAS  Google Scholar 

  16. Debregeas G, Tabuteau H, di Meglio JM (2001) Deformation and flow of a two-dimensional foam under continuous shear. Phys Rev Lett 87:178305

    Article  CAS  Google Scholar 

  17. Dollet B, Elias F, Quilliet C, Huillier A, Aubouy M, Graner F (2005) Two-dimensional flows of foam: drag exerted on circular obstacles and dissipation. Colloids and Surfaces A: Physicochem Eng Aspects 263:101–110

    Article  CAS  Google Scholar 

  18. Jiang Y, Asipauskas M, Glazier JA, Aubuoy M, Graner F, Jiang Y (2000) Ab initio derivations of stress and strain in fluid foams. In: Zitha P, Banhart J, Verbist G (eds) Foams, emulsions and their applications. MIT-Verlag, Bremen, p 297–304

    Google Scholar 

  19. Cox SJ, Vaz MF, Weaire D (2003) Topological changes in a two-dimensional foam cluster. Eur Phys J E 11:29–35

    Article  CAS  Google Scholar 

  20. Kern N, Weaire D, Martin A, Hutzler S, Cox SJ (2004) The two-dimensional viscous froth model for foam dynamics. Physical Review E 70:041411 (13 pages)

    Article  CAS  Google Scholar 

  21. Weaire D, McMurry S (1997) Some fundamentals of grain growth. Solid State Physics — Advances in Research and Applications 50:1–36

    CAS  Google Scholar 

  22. Bretherton FP (1961) The motion of long bubbles in tubes. J Fluid Mech 10:166–188

    Article  Google Scholar 

  23. Princen HM (1985) Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions. J Coll Int Sci 105:150–171

    Article  CAS  Google Scholar 

  24. Cox SJ (2005) A viscous froth model for dry foams in the Surface Evolver. Colloids and Surfaces A: Physicochem Eng Aspects 263:81–89

    Article  CAS  Google Scholar 

  25. Durand M, Stone HA. Relaxation time associated with the elementary topological T1 process in a two-dimensional foam. (to be submitted)

    Google Scholar 

  26. Sun Q, Hutzler S (2004) Lattice gas simulations of two-dimensional liquid foams. Rheologica Acta 43:567–574

    Article  CAS  Google Scholar 

  27. Sun Q, Hutzler S (2005) Studying localised bubble rearrangements in 2D liquid foams using a hybrid lattice gas model. Colloids and Surfaces A: Physicochem Eng Aspects 263:27–32

    Article  CAS  Google Scholar 

  28. Denkov ND, Subramanian V, Gurovich D, Lips A (2005) Wall slip and viscous dissipation in sheared foams: Effect of surface mobility. Colloids and Surfaces A: Physicochem Eng Aspects 263:129–145

    Article  CAS  Google Scholar 

  29. Saugey A, Drenckhan W, Weaire D (2006) Wall slip of bubbles in sheared foams. Physics of Fluids (in press)

    Google Scholar 

  30. Weaire D, Janiaud E, Hutzler S (2006) Two dimensional foam rheology with viscous drag. arXiv:cond-mat/0602021 v1 1 Feb 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter Richtering

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weaire, D., Hutzler, S., Drenckhan, W., Saugey, A., Cox, S.J. (2006). The Rheology of Foams. In: Richtering, W. (eds) Smart Colloidal Materials. Progress in Colloid and Polymer Science, vol 133. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32702-9_16

Download citation

Publish with us

Policies and ethics