Abstract
This paper presents a selective survey on panel data methods. The focus is on new developments. In particular, linear multilevel models, specific nonlinear, nonparametric and semiparametric models are at the center of the survey. In contrast to linear models there do not exist unified methods for nonlinear approaches. In this case conditional maximum likelihood methods dominate for fixed effects models. Under random effects assumptions it is sometimes possible to employ conventional maximum likelihood methods using Gaussian quadrature to reduce a T-dimensional integral. Alternatives are generalized methods of moments and simulated estimators. If the nonlinear function is not exactly known, nonparametric or semiparametric methods should be preferred.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Helpful comments and suggestions from an unknown referee are gratefully acknowledged.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Abowd, J. M., Creecy, R. H., Kramarz, F. (2002). Computing person and firm effects using linked longitudinal employer-employee data. Cornell University, Working Paper.
Abowd, J. M., Kramarz, F. (1999). The analysis of labor markets using matched employer-employee data. In Handbook of Labor Economics, (O. Ashenfeiter, D. Card, eds.), 2629–2710. Vol. 3B, Elsevier, Amsterdam.
Abowd, J. M., Kramarz, F., Margolis, D. N. (1999). High wage workers and high wage firms. Econometrica67 251–333.
Ahn, S., Schmidt, P. (1995). Efficient estimation of models for dynamic panel data. Journal of Econometrics68 5–27.
Arellano, M. (2003). Panel data econometrics. University Press, Oxford.
Arellano, M., Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies58 277–297.
Baltagi, B. (2001). Econometric Analysis of Panel Data. 2nd ed., John Wiley & Sons, Chichester.
Baltagi, B.H., Hidalgo, J., Li, Q. (1996). A nonparametric test for poolability using panel data. Journal of Econometrics75 345–367.
Bertschek, L, Lechner, M. (1998). Convenient estimators for the panel probit model. Journal of Econometrics87(2) 329–372.
Blundell, R., Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics87 115–143.
Breitung, J., Lechner, M. (1999). Alternative GMM methods for nonlinear panel data models. In Generalized Method of Moments Estimation (L. Matyas, ed.), 248–274. University Press, Cambridge.
Butler, J., Moffitt, R. (1982). A computationally efficient quadrature procedure for the one factor multinomial probit model. Econometrica50 761–764.
Chamberlain, G. (1984). Panel data. In Handbook of Econometrics (Z. Griliches and M. Intriligator, eds.), 1247–1318. North-Holland, Amsterdam.
Davis, P. (2002). Estimating multi-way error components models with unbalanced data structure. Journal of Econometrics106 67–95.
Geweke, J., Keane, M., Runkle, D. (1997). Statistical inference in the multinomial multiperiod probit model. Journal of Econometrics80 125–165.
Goux, D., Maurin, E. (1999). Persistence of interindustry wage differentials: A reexamination using matched worker-firm panel data. Journal of Labor Economics17 492–533.
Greene, W. (2004). Convenient estimators for the panel probit model: Further results. Empirical Economics29 21–47.
Hastie, T. J. Tibshirani, R. J. (1997). Generalized Additive Models. Chapman and Hall, London.
Hausman, J. A. (1978). Specification tests in econometrics. Econometrica46 1251–1272.
Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica47 153–161.
Hildreth, A. K., Pudney, S. (1999). Econometric issues in the analysis of linked cross-section employer-worker surveys. In The Creation and Analysis of Employer-Employee Matched Data (J. Haltiwanger et al, eds.), 461–488. North-Holland, Amsterdam.
Honore, B. E. (1992), Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects. Econometrica60 533–565.
Honore, B.E., Kyriazidou, E. (2000). Estimation of Tobit-type models with individual specific effects. Econometric Reviews19 341–366.
Honore, B.E., Lewbel, A. (2002). Semiparametric binary choice panel data models without strictly exogenous regressors. Econometrica70 2053–2063.
Hsiao, C. (2004). Analysis of panel data. 2nd ed., University Press, Cambridge.
Hsiao, C, Pesaran, M, Tahmiscioglu, A.K. (2002). Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. Journal of Econometrics109 107–150.
Hübler, O. (1990). Lineare Paneldatenmodelle mit alternativer Störgrößen-struktur. In Neuere Entwicklungen in der Angewandten Ökonometrie (G. Nakhaeizadeh, K.-H. Vollmer, eds.), 65–99. Physica, Heidelberg.
Hübler, O. (2003). Neuere Entwicklungen in der Mikroökonometrie. In Empirische Wirtschaftsforschung — Methoden und Anwendungen (W. Franz, H. J. Ramser, M. Stadler, eds.), 1–35. Mohr Siebeck, Tübingen.
Hübler, O. (2005). Nichtlineare Paneldatenanalyse. Mimeo.
Keane, M. (1994). A computationally practical simulation estimator for panel data. Econometrica62 95–116.
König, A. (1997). Schätzen und Testen in semiparametrisch partiell linearen Modellen für die Paneldatenanalyse. University of Hannover, Diskussionspapier Nr. 208.
König, A. (2002). Nichtparametrische und semiparametrische Schätzverfahren für die Paneldatenanalyse. Lit-Verlag, Minister.
Kyriazidou, E. (1995). Essays in Estimation and Testing of Econometric Models. Dissertation, Evanston (Illinois).
Kyriazidou, E. (1997). Estimation of a panel data sample selection model. Econometrica65 1335–1364.
Lee, M.-J. (1999). Nonparametric estimation and test for quadrant correlation in multivariate binary response models. Econometric Reviews18 387–415.
Li, Q., Hsiao, C. (1998). Testing serial correlation in semiparametric panel data models. Journal of Econometrics87 207–237.
Li, Q., Stengos, T. (1996). Semiparametric estimation of partially linear panel data models. Journal of Econometrics71 389–397.
Li, Q., Ullah, A. (1998). Estimating partially linear panel data models with one-way error components. Econometric Reviews17 145–166.
Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of choice. Journal of Econometrics3 205–228.
Manski, C. F. (1987). Semiparametric analysis of random effects linear models from binary panel data. Econometrica55 357–362.
Pagan, A., Ullah, A. (1999). Nonparametric Analysis. Cambridge University Press, Cambridge.
Revelt, D., Train, K. (1998). Mixed logit with repeated choices of appliance efficiency levels. Review of Economics and Statistics80 647–657.
Robinson, P. M. (1988). Root-N-consistent semiparametric regression. Economet-rica56 931–954.
Ullah, A., Roy, N. (1998). Nonparametric and semiparametric econometrics of panel data. In Handbook of Applied Economics (A. Ullah, D.E. A. Giles, eds.), 579–604. Marcel Dekker, New York.
Wandsbeek, T. J., Kapteyn, A. (1989). Estimation of the error components model with incomplete panels. Journal of Econometrics41 341–261.
Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. MIT Press, Cambridge.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer Berlin · Heidelberg
About this chapter
Cite this chapter
Hübler, O. (2006). Multilevel and Nonlinear Panel Data Models. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_9
Download citation
DOI: https://doi.org/10.1007/3-540-32693-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32692-2
Online ISBN: 978-3-540-32693-9
eBook Packages: Business and EconomicsEconomics and Finance (R0)
