Skip to main content

Multilevel and Nonlinear Panel Data Models

  • Chapter
  • 2056 Accesses

Abstract

This paper presents a selective survey on panel data methods. The focus is on new developments. In particular, linear multilevel models, specific nonlinear, nonparametric and semiparametric models are at the center of the survey. In contrast to linear models there do not exist unified methods for nonlinear approaches. In this case conditional maximum likelihood methods dominate for fixed effects models. Under random effects assumptions it is sometimes possible to employ conventional maximum likelihood methods using Gaussian quadrature to reduce a T-dimensional integral. Alternatives are generalized methods of moments and simulated estimators. If the nonlinear function is not exactly known, nonparametric or semiparametric methods should be preferred.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Helpful comments and suggestions from an unknown referee are gratefully acknowledged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abowd, J. M., Creecy, R. H., Kramarz, F. (2002). Computing person and firm effects using linked longitudinal employer-employee data. Cornell University, Working Paper.

    Google Scholar 

  • Abowd, J. M., Kramarz, F. (1999). The analysis of labor markets using matched employer-employee data. In Handbook of Labor Economics, (O. Ashenfeiter, D. Card, eds.), 2629–2710. Vol. 3B, Elsevier, Amsterdam.

    Google Scholar 

  • Abowd, J. M., Kramarz, F., Margolis, D. N. (1999). High wage workers and high wage firms. Econometrica67 251–333.

    CrossRef  Google Scholar 

  • Ahn, S., Schmidt, P. (1995). Efficient estimation of models for dynamic panel data. Journal of Econometrics68 5–27.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Arellano, M. (2003). Panel data econometrics. University Press, Oxford.

    MATH  Google Scholar 

  • Arellano, M., Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies58 277–297.

    CrossRef  MATH  Google Scholar 

  • Baltagi, B. (2001). Econometric Analysis of Panel Data. 2nd ed., John Wiley & Sons, Chichester.

    Google Scholar 

  • Baltagi, B.H., Hidalgo, J., Li, Q. (1996). A nonparametric test for poolability using panel data. Journal of Econometrics75 345–367.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Bertschek, L, Lechner, M. (1998). Convenient estimators for the panel probit model. Journal of Econometrics87(2) 329–372.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Blundell, R., Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics87 115–143.

    CrossRef  MATH  Google Scholar 

  • Breitung, J., Lechner, M. (1999). Alternative GMM methods for nonlinear panel data models. In Generalized Method of Moments Estimation (L. Matyas, ed.), 248–274. University Press, Cambridge.

    Google Scholar 

  • Butler, J., Moffitt, R. (1982). A computationally efficient quadrature procedure for the one factor multinomial probit model. Econometrica50 761–764.

    CrossRef  MATH  Google Scholar 

  • Chamberlain, G. (1984). Panel data. In Handbook of Econometrics (Z. Griliches and M. Intriligator, eds.), 1247–1318. North-Holland, Amsterdam.

    Google Scholar 

  • Davis, P. (2002). Estimating multi-way error components models with unbalanced data structure. Journal of Econometrics106 67–95.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Geweke, J., Keane, M., Runkle, D. (1997). Statistical inference in the multinomial multiperiod probit model. Journal of Econometrics80 125–165.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Goux, D., Maurin, E. (1999). Persistence of interindustry wage differentials: A reexamination using matched worker-firm panel data. Journal of Labor Economics17 492–533.

    CrossRef  Google Scholar 

  • Greene, W. (2004). Convenient estimators for the panel probit model: Further results. Empirical Economics29 21–47.

    CrossRef  Google Scholar 

  • Hastie, T. J. Tibshirani, R. J. (1997). Generalized Additive Models. Chapman and Hall, London.

    Google Scholar 

  • Hausman, J. A. (1978). Specification tests in econometrics. Econometrica46 1251–1272.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica47 153–161.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Hildreth, A. K., Pudney, S. (1999). Econometric issues in the analysis of linked cross-section employer-worker surveys. In The Creation and Analysis of Employer-Employee Matched Data (J. Haltiwanger et al, eds.), 461–488. North-Holland, Amsterdam.

    Google Scholar 

  • Honore, B. E. (1992), Trimmed LAD and least squares estimation of truncated and censored regression models with fixed effects. Econometrica60 533–565.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Honore, B.E., Kyriazidou, E. (2000). Estimation of Tobit-type models with individual specific effects. Econometric Reviews19 341–366.

    MATH  MathSciNet  Google Scholar 

  • Honore, B.E., Lewbel, A. (2002). Semiparametric binary choice panel data models without strictly exogenous regressors. Econometrica70 2053–2063.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Hsiao, C. (2004). Analysis of panel data. 2nd ed., University Press, Cambridge.

    Google Scholar 

  • Hsiao, C, Pesaran, M, Tahmiscioglu, A.K. (2002). Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. Journal of Econometrics109 107–150.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Hübler, O. (1990). Lineare Paneldatenmodelle mit alternativer Störgrößen-struktur. In Neuere Entwicklungen in der Angewandten Ökonometrie (G. Nakhaeizadeh, K.-H. Vollmer, eds.), 65–99. Physica, Heidelberg.

    Google Scholar 

  • Hübler, O. (2003). Neuere Entwicklungen in der Mikroökonometrie. In Empirische Wirtschaftsforschung — Methoden und Anwendungen (W. Franz, H. J. Ramser, M. Stadler, eds.), 1–35. Mohr Siebeck, Tübingen.

    Google Scholar 

  • Hübler, O. (2005). Nichtlineare Paneldatenanalyse. Mimeo.

    Google Scholar 

  • Keane, M. (1994). A computationally practical simulation estimator for panel data. Econometrica62 95–116.

    CrossRef  MATH  Google Scholar 

  • König, A. (1997). Schätzen und Testen in semiparametrisch partiell linearen Modellen für die Paneldatenanalyse. University of Hannover, Diskussionspapier Nr. 208.

    Google Scholar 

  • König, A. (2002). Nichtparametrische und semiparametrische Schätzverfahren für die Paneldatenanalyse. Lit-Verlag, Minister.

    Google Scholar 

  • Kyriazidou, E. (1995). Essays in Estimation and Testing of Econometric Models. Dissertation, Evanston (Illinois).

    Google Scholar 

  • Kyriazidou, E. (1997). Estimation of a panel data sample selection model. Econometrica65 1335–1364.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Lee, M.-J. (1999). Nonparametric estimation and test for quadrant correlation in multivariate binary response models. Econometric Reviews18 387–415.

    MATH  MathSciNet  Google Scholar 

  • Li, Q., Hsiao, C. (1998). Testing serial correlation in semiparametric panel data models. Journal of Econometrics87 207–237.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Li, Q., Stengos, T. (1996). Semiparametric estimation of partially linear panel data models. Journal of Econometrics71 389–397.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Li, Q., Ullah, A. (1998). Estimating partially linear panel data models with one-way error components. Econometric Reviews17 145–166.

    MATH  CAS  MathSciNet  Google Scholar 

  • Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of choice. Journal of Econometrics3 205–228.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Manski, C. F. (1987). Semiparametric analysis of random effects linear models from binary panel data. Econometrica55 357–362.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Pagan, A., Ullah, A. (1999). Nonparametric Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Revelt, D., Train, K. (1998). Mixed logit with repeated choices of appliance efficiency levels. Review of Economics and Statistics80 647–657.

    CrossRef  Google Scholar 

  • Robinson, P. M. (1988). Root-N-consistent semiparametric regression. Economet-rica56 931–954.

    CrossRef  MATH  Google Scholar 

  • Ullah, A., Roy, N. (1998). Nonparametric and semiparametric econometrics of panel data. In Handbook of Applied Economics (A. Ullah, D.E. A. Giles, eds.), 579–604. Marcel Dekker, New York.

    Google Scholar 

  • Wandsbeek, T. J., Kapteyn, A. (1989). Estimation of the error components model with incomplete panels. Journal of Econometrics41 341–261.

    CrossRef  MathSciNet  Google Scholar 

  • Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. MIT Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Hübler, O. (2006). Multilevel and Nonlinear Panel Data Models. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_9

Download citation

Publish with us

Policies and ethics