Skip to main content

Using Quantile Regression for Duration Analysis

  • Chapter

Abstract

Quantile regression methods are emerging as a popular technique in econometrics and biometrics for exploring the distribution of duration data. This paper discusses quantile regression for duration analysis allowing for a flexible specification of the functional relationship and of the error distribution. Censored quantile regression addresses the issue of right censoring of the response variable which is common in duration analysis. We compare quantile regression to standard duration models. Quantile regression does not impose a proportional effect of the covariates on the hazard over the duration time. However, the method cannot take account of time-varying covariates and it has not been extended so far to allow for unobserved heterogeneity and competing risks. We also discuss how hazard rates can be estimated using quantile regression methods.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This paper benefitted from the helpful comments by an anonymous referee. Due to space constraints, we had to omit the details of the empirical application. These can be found in the long version of this paper, Fitzenberger and Wilke (2005). We gratefully acknowledge financial support by the German Research Foundation (DFG) through the research project ‘Microeconometric modelling of unemployment durations under consideration of the macroeconomic situation’. Thanks are due to Xuan Zhang for excellent research assistance. All errors are our sole responsibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bilias, Y., Chen, S., Ying, Z. (2000). Simple resampling methods for censored regression quantiles. Journal of Econometrics99 373–386.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Buchinsky, M. (1995). Quantile regression, Box-Cox transformation model, and the U.S. wage structure, 1963–1987. Journal of Econometrics65 109–154.

    CrossRef  MATH  Google Scholar 

  • Buchinsky, M. (1998). Recent advances in quantile regression models: A practical guideline for empirical research. Journal of Human Resources33 88–126.

    CrossRef  Google Scholar 

  • Buchinsky, M. (2001). Quantile regression with sample selection: Estimating women’s return to education in the US. Empirical Economics26 87–113.

    CrossRef  Google Scholar 

  • Buchinsky, M., Hahn, J. (1998). An alternative estimator for the censored quantile regression model. Econometrica66 653–672.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Chamberlain, G. (1994). Quantile regression, censoring, and the structure of wages. In Advances in Econometrics: Sixth World Congress, Volume 1 (C. Sims, ed.), Econometric Society Monograph No. 23, Cambridge University Press, Cambridge.

    Google Scholar 

  • Chernozhukov, V., Hong, H. (2002). Three-step censored quantile regression and extramarital affairs. Journal of the American Statistical Association97 872–882.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Fitzenberger, B. (1997). A guide to censored quantile regressions. In Handbook of Statistics, Volume 15: Robust Inference (G. S. Maddala, C. R. Rao, eds.), 405–437, North-Holland, Amsterdam.

    Google Scholar 

  • Fitzenberger, B. (1998). The moving blocks bootstrap and robust inference for linear least squares and quantile regressions. Journal of Econometrics82 235–287.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Fitzenberger, B., Wilke, R. A. (2005). Using quantile regression for duration analysis. ZEW Discussion Paper, 05–58.

    Google Scholar 

  • Fitzenberger, B., Wilke, R. A., Zhang, X. (2004). A note on implementing box-cox regression. ZEW Discussion Paper, 04–61.

    Google Scholar 

  • Fitzenberger, B., Winker, P. (2001). Improving the computation of censored quantile regressions. Discussion Paper, University of Mannheim.

    Google Scholar 

  • Guimarães, J., Machado, J. A. F., Portugal, P. (2004). Has long become longer and short become shorter? Evidence from a censored quantile regression analysis of the changes in the distribution of U.S. unemployment duration. Unpublished discussion paper, Universidade Nova de Lisboa.

    Google Scholar 

  • Hoderlein, S., Mammen, E. (2005). Partial identification and nonparametric estimation of nonseparable, nonmonotonous functions. Unpublished Discussion Paper, University of Mannheim.

    Google Scholar 

  • Horowitz, J., Neumann, G. (1987). Semiparametric estimation of employment duration models. Econometric Reviews6 5–40.

    MATH  MathSciNet  Google Scholar 

  • Kiefer, N. M. (1988). Economic duration data and hazard functions. Journal of Economic Literature26 649–679.

    Google Scholar 

  • Koenker, R., Bassett, G. (1978). Regression quantiles. Econometrica46 33–50.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Koenker, R., Bilias, Y. (2001). Quantile regression for duration data: A reappraisal of the Pennsylvania reemployment bonus experiments. Empirical Economics26 199–220.

    CrossRef  Google Scholar 

  • Koenker, R., Geling, O. (2001). Reappraising medfly longevity: A quantile regression survival analysis. Journal of the American Statistical Association96 458–468.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Koenker, R., Hallock, K. (2002). Quantile regression. The Journal of Economic Perspectives15 143–156.

    CrossRef  Google Scholar 

  • Lancaster, T. (1990). The econometric analysis of transition data. Econometric Society Monographs No. 17, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Machado, J.A.F., Portugal, P. (2002). Exploring transition data through quantile regression methods: An application to U.S. unemployment duration. In Statistical data analysis based on the L1-norm and related methods — 4th International Conference on the Ll-norm and Related Methods (Y. Dodge, ed.), Birkhäuser, Basel.

    Google Scholar 

  • Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statistical Association98 1001–1012.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Powell, J.L. (1984). Least absolute deviations estimation for the censored regression model. Journal of Econometrics25 303–325.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Powell, J.L. (1986). Censored regression quantiles. Journal of Econometrics32 143–155.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Powell, J. L. (1991). Estimation of monotonic regression models under quantile restrictions. In Nonparametric and semiparametric methods in Econometrics (W. Barnett, J. Powell, G. Tauchen, eds.), 357–384, Cambridge University Press, New York.

    Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall, London.

    MATH  Google Scholar 

  • Van den Berg, G. J. (2001). Duration models: Specification, identification and multiple durations. In Handbook of Econometrics (J. J. Heckman, E. Learner, eds.), 3381–3460, Volume 5, Elsevier, Amsterdam.

    Google Scholar 

  • Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. MIT Press, Cambridge.

    Google Scholar 

  • Zhang, X. (2004). Neuere Entwicklungen in der Analyse von Verweildauermo-dellen mit Quantilsregressionen als Alternative zum konventionellen Modell der proportionalen Hazardrate. Diploma Thesis, University of Mannheim.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Fitzenberger, B., Wilke, R.A. (2006). Using Quantile Regression for Duration Analysis. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_8

Download citation

Publish with us

Policies and ethics