Skip to main content

Econometric Analysis of High Frequency Data

  • Chapter
  • 2042 Accesses

Abstract

Owing to enormous advances in data acquisition and processing technology the study of high (or ultra) frequency data has become an important area of econometrics. At least three avenues of econometric methods have been followed to analyze high frequency financial data: Models in tick time ignoring the time dimension of sampling, duration models specifying the time span between transactions and, finally, fixed time interval techniques. Starting from the strong assumption that quotes are irregularly generated from an underlying exogeneous arrival process, fixed interval models promise feasibility of familiar time series techniques. Moreover, fixed interval analysis is a natural means to investigate multivariate dynamics. In particular, models of price discovery are implemented in this venue of high frequency econometrics. Recently, a sound statistical theory of ‘realized volatility’ has been developed. In this framework high frequency log price changes are seen as a means to observe volatility at some lower frequency.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Admati, A.R., Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price variability. Review of Financial Studies1 3–40.

    CrossRef  Google Scholar 

  • Aït-Sahalia, Y., Mykland, P. A., Zhang, L. (2005). Ultra high frequency volatility estimation with dependent microstructure noise. National Bureau of Economic Research, Paper in Asset Pricing, Working Paper No. 11380.

    Google Scholar 

  • Andersen, T.G., Bollerslev, T., Diebold, F.X. (2005). Parametric and nonparametric volatility measurement. In Handbook of Financial Econometrics (L. P. Hansen, Y. Aït-Sahalia, eds.), forthcoming. North Holland, Amsterdam.

    Google Scholar 

  • Andersen, T.G., Bollerslev, T., Diebold, F.X., Ebens, H. (2001). The distribution of realized stock return volatility. Journal of Financial Economics61 43–76.

    CrossRef  Google Scholar 

  • Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2001). The distribution of realized exchange rate volatility. Journal of the American Statistical Association96 42–55.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Andersen,.T. G., Bollerslev, T., Diebold, F.X., Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica71 579–625.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Andersen, T. G., Bollerslev, T., Diebold, F.X., Wu (2004). Realized beta: Persistence and predictability. Northwestern University, Duke University and University of Pennsylvania, Manuscript.

    Google Scholar 

  • Back, K. (1991). Asset pricing for general processes. Journal of Mathematical Economics20 371–395.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N. (2002a). Econometric analysis of realized volatility and its use in estimation stochastic volatility models. Journal of the Royal Statistical Society, Series B64 253–280.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N. (2002b). Estimating quadratic variation using realized variance. Journal of Applied Econometrics17 457–477.

    CrossRef  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N. (2004). Econometric analysis of realized covariation: High frequency based covariance, regression and correlation in financial economics. Econometrica72 885–925.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O. E., Shephard, N. (2005). How accurate is the asymptotic approximation to the distribution of realized volatility?. In Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg (D. W. F. Andrews, J. H. Stock, eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section 177–181.

    Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics31 307–327.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Bollerslev, T. (1987). A conditional heteroscedastic time series model for speculative prices and rates of return. Review of Economics and Statistics69 542–547.

    CrossRef  Google Scholar 

  • Dacorogna, M. M., Müller, U.A., Nagler, R. J., Olsen, R. B., Pictet, O. V. (1993). A geographical model for the daily and weekly seasonal volatility in the foreign exchange market. Journal of International Money and Finance12 413–438.

    CrossRef  Google Scholar 

  • de Jong, F., Nijman, T. (1997). High-frequency analysis of lead-lag relationships between financial markets. Journal of Empirical Finance4 187–212.

    CrossRef  Google Scholar 

  • de Jong, F., Mahieu, R., Schotman, P. (1998). Price discovery in the foreign exchange market: An empirical analysis of the Yen/Dmark rate. Journal of International Money and Finance17 5–27.

    CrossRef  Google Scholar 

  • Easley, D., O’Hara, M. (1992). Time and the process of security price adjustment. Journal of Finance19 69–90.

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica50 987–1008.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Engle, R. F., Gonzalez-Rivera, G. (1991). Semiparametric ARCH models. Journal of Business an Economic Statistics9 435–459.

    Google Scholar 

  • Engle, R. F., Granger, C.W. J. (1987). Co-integration and error correction: Representation, estimation and testing. Econometrica55 251–276.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Engle, R. F., Russell, J. R. (1998). Autoregressive conditional duration: A new model for irregularly spaced data. Econometrica66 1127–1162.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Engle, R. F., Russell, J. R. (2005). Analysis of high frequency financial data. In Handbook of Financial Econometrics (L. P. Hansen, Y. Aït-Sahalia, eds.), forthcoming. North Holland, Amsterdam.

    Google Scholar 

  • Frijns, B., Schotman, P. (2003). Price discovery in tick time. Limburg Institute of Financial Economics LIFE, Working Paper 03-024.

    Google Scholar 

  • Ghysels, E., Gouriéroux, C., Jasiak, J. (1997). Market time and asset price movements: Theory and estimation. In Statistics in Finance (D. Hand, S. Jacka, eds.), 307–332. Edward Arnold, London.

    Google Scholar 

  • Goodhart, C. A. E., O’Hara, M. (1997). High frequency data in financial markets: Issues and applications. Journal of Empirical Finance4 73–114.

    CrossRef  Google Scholar 

  • Goodhart, C. A. E., Hall, S. G., Henry, S. G. B., Pesaran, B. (1993). News effects in a high frequency model of the Sterling-Dollar exchange rate. Journal of Applied Econometrics8 1–13.

    Google Scholar 

  • Grammig, J., Melvin, M., Schlag, C. (2005). Internationally cross-listed stock prices during overlapping trading hours: Price discovery and exchange rate effects. Journal of Empirical Finance12 139–164.

    CrossRef  Google Scholar 

  • Granger, C. W. J. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control2 329–352.

    CrossRef  MathSciNet  Google Scholar 

  • Hansen, P.R., Lunde, A. (2004). An unbiased measure of realized variance. Brown University, Working Paper.

    Google Scholar 

  • Harris, F.H. deB., Shoesmith, G.L., Mcinish, T.H., Wood, R. A. (1995). Cointegration, error correction, and price discovery on informationally linked security markets. Journal of Financial and Quantitative Analysis30 563–579.

    CrossRef  Google Scholar 

  • Hasbrouck, J. (1995). One security, many markets, determining the contributions to price discovery. Journal of Finance50 1175–1199.

    CrossRef  Google Scholar 

  • Herwartz, H. (2001). Investigating the JPY/DEM rate: Arbitrage opportunities and a case for asymmetry. International Journal of Forecasting17 231–245.

    CrossRef  Google Scholar 

  • Huang, R. D. (2002). The quality of ECN and market maker quotes. Journal of Finance57 1285–1319.

    CrossRef  Google Scholar 

  • Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing observations. Technometrics22 389–395.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Jordà, Ò., Marcellino, M. (2003). Modeling high-frequency foreign exchange data dynamics. Macroeconomic Dynamics7 618–635.

    CrossRef  MATH  Google Scholar 

  • Karpoff, J. M. (1987). The relation between price changes and trading volume: A survey. Journal of Financial and Quantitative Analysis22 109–26.

    CrossRef  Google Scholar 

  • Kohn, R., Ansley, C. F. (1986). Estimation, prediction, and interpolation for ARIMA models with missing data. Journal of the American Statistical Association81 751–761.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Lo, M. C., Zivot, E. (2001). Threshold cointegration and nonlinear adjustment to the law of one price. Macroeconomic Dynamics5 533–576.

    MATH  Google Scholar 

  • Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis. Springer, Berlin.

    MATH  Google Scholar 

  • Nelson, D. B. (1990). ARCH models as diffusion approximations. Journal of Econometrics45 7–39.

    CrossRef  MathSciNet  Google Scholar 

  • Merton, R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science4 141–183.

    CrossRef  MathSciNet  Google Scholar 

  • Oomen, R. C. (2003). Three Essays on the Econometric Analysis of High Frequency Financial Data. European University Institute, Ph. D. thesis.

    Google Scholar 

  • Protter, P. (1990). Stochastic Integration and Differential Equations: A New Approach. Springer, New York.

    MATH  Google Scholar 

  • Schreiber, P. S., Schwartz, R. A. (1986). Price discovery in securities markets. Journal of Portfolio Management12 43–48.

    Google Scholar 

  • Schwert, G. W. (1989). Why does stock market volatility change over time. Journal of Finance44 1115–1153.

    CrossRef  Google Scholar 

  • Schwert, G. W. (1990). Stock volatility and the crash of’ 87. Journal of Financial Studies3 77–102.

    CrossRef  Google Scholar 

  • Taylor, S. J. (1986). Modeling financial time series. John Wiley, Chichester.

    Google Scholar 

  • Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association89 208–218.

    CrossRef  Google Scholar 

  • White, H. (1984). Asymptotic Theory for Econometricians. Academic Press, Orlando.

    Google Scholar 

  • Zhang, L., Mykland, P. A., Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association (forthcoming).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Herwartz, H. (2006). Econometric Analysis of High Frequency Data. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_7

Download citation

Publish with us

Policies and ethics