Skip to main content

Unit Root Testing

  • Chapter
  • 2056 Accesses

Abstract

The occurrence of unit roots in economic time series has far reaching consequences for univariate as well as multivariate econometric modelling. Therefore, unit root tests are nowadays the starting point of most empirical time series studies. The oldest and most widely used test is due to Dickey and Fuller (1979). Reviewing this test and variants thereof we focus on the importance of modelling the deterministic component. In particular, we survey the growing literature on tests accounting for structural shifts. Finally, further applied aspects are addressed, for instance, how to get the size correct and obtain good power at the same time.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

We thank Mu-Chun Wang for producing the figures, and an anonymous referee for comments improving the presentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajat, L., Burridge, P. (2000). Unit root tests in the presence of uncertainty about the non-stochastic trend. Journal of Econometrics95 71–96.

    CrossRef  MathSciNet  Google Scholar 

  • Amsler, Ch., Lee, J. (1995). An LM test for a unit root in the presence of a structural change. Econometric Theory11 359–368.

    MathSciNet  Google Scholar 

  • Banerjee, A., Lumsdaine, R. L., Stock, J.H. (1992). Recursive and sequential tests of the unit-root and trend-break hypothesis: Theory and international evidence. Journal of Business & Economic Statistics10 271–287.

    CrossRef  Google Scholar 

  • Breitung, J., Pesaran, H. (2005). Unit roots and cointegration in panel data. University of Bonn, Mimeo.

    Google Scholar 

  • Campbell, J.Y., Perron. P. (1991). Pitfalls and opportunities: What macroe-conomists should know about unit roots. In NBER Marcoeconomics Annual 1991 (O.J. Blanchard, S. Fisher, eds.), 141–201. MIT Press, Cambridge.

    Google Scholar 

  • Chan, K. H., Hayya, J. C, Ord, J. K. (1977). A note on trend removal methods: The case of polynomial regressions versus variate differencing. Econometrica45 737–744.

    CrossRef  MATH  Google Scholar 

  • Chang, Y., Park, J. Y. (2002). On the asymptotics of ADF tests for unit roots. Econometric Reviews21 431–447.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Christiano, L. J. (1992). Searching for a break in GNP. Journal of Business & Economic Statistics10 237–250.

    CrossRef  Google Scholar 

  • Demetrescu, M., Hassler, U. (2005). Effect of neglected deterministic season-ality on unit root tests. Statistical Papers (forthcoming).

    Google Scholar 

  • Dickey, D. A., Fuller, W. A. (1979). Distribution of the estimators for au-toregressive time series with a unit root. Journal of the American Statistical Association74 427–431.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Dickey, D. A., Fuller, W. A. (1981). Likelihood ratio statistics for autoregres-sive time series with a unit root. Econometrica49 1057–1072.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Dickey, D. A., Bell, W. R., Miller, R. B. (1986). Unit roots in time series models: Tests and implications. American Statistician40 12–26.

    CrossRef  Google Scholar 

  • Diebold, F. X., Nerlove, M. (1990). Unit roots in economic time series: A selective survey. In Advances in Econometrics: Cointegration, Spurious Regressions, and Unit Roots (T. B. Fomby, G. F. Rhodes, eds.), 3–70. JAI Press, Greenwich.

    Google Scholar 

  • Durlauf, S., Phillips. P. C. B. (1988). Trends versus random walks in time series analysis. Econometrica56 1333–1354.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Elliott, G., Rothenberg, Th. J., Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica64 813–836.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Engle, R. F., Granger, C.W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica55 251–276.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Evans, G. B. A., Savin, N. E. (1981). Testing for unit roots: 1. Econometrica49 753–779.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Evans, G. B. A., Savin, N. E. (1984). Testing for unit roots: 2. Econometrica52 1241–1270.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Fuller, W. A. (1976). Introduction to Statistical Time Series. Wiley, New York.

    MATH  Google Scholar 

  • Gonzalo, J., Lee, T.-H. (1996). Relative power of t type tests for stationary and unit root processes. Journal of Time Series Analysis17 37–47.

    MATH  MathSciNet  Google Scholar 

  • Granger, C. W. J. (1981). Some properties of time series data and their use in econometric model specification. Journal of Econometrics16 121–130.

    CrossRef  Google Scholar 

  • Granger, C. W. J., Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics2 111–120.

    CrossRef  MATH  Google Scholar 

  • Hassler, U. (1994). Einheitswurzeltests-Ein Überblick. Allgemeines Statistisches Archiv78 207–228.

    Google Scholar 

  • Hassler, U., Demetrescu, M. (2005). Spurious persistence and unit roots due to seasonal differencing: The case of inflation rates. Journal of Economics and Statistics225 413–426.

    Google Scholar 

  • Hassler, U., Wolters, J. (1994). On the power of unit root tests against fractional alternatives. Economics Letters45 1–5.

    CrossRef  MATH  Google Scholar 

  • Hwang, J., Schmidt, P. (1996). Alternative methods of detrending and the power of unit root tests. Journal of Econometrics71 227–248.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Hylleberg, S., Engle, R. F., Granger, C. W. J., Yoo, B. S. (1990). Seasonal integration and cointegration. Journal of Econometrics44 215–238.

    CrossRef  MathSciNet  Google Scholar 

  • Juselius, K. (1999). Models and relations in economics and econometrics. Journal of Economic Methodology6 259–290.

    Google Scholar 

  • Kapetanios, G. (2005). Unit-root testing against the alternative hypothesis of up to m structural breaks. Journal of Time Series Analysis26 123–133.

    CrossRef  MathSciNet  Google Scholar 

  • Kim, K., Schmidt, P. (1993). Unit roots tests with conditional heteroskedasticity. Journal of Econometrics59 287–300.

    CrossRef  Google Scholar 

  • Kim, T.W., Leybourne, S., Newbold, P. (2004). Behaviour of Dickey-Fuller unit-root tests under trend misspecification. Journal of Time Series Analysis25 755–764.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of unit root. Journal of Econometrics54 159–178.

    CrossRef  MATH  Google Scholar 

  • Lanne, M., Lütkepohl, H., Saikkonen, P. (2002). Comparison of unit root tests for time series with level shifts. Journal of Time Series Analysis23 667–685.

    CrossRef  MathSciNet  Google Scholar 

  • Leybourne, S. J (1995). Testing for unit roots using forward and reverse Dickey-Puller regressions. Oxford Bulletin of Economics and Statistics57 559–571.

    Google Scholar 

  • Leybourne, S. J., Kim, T. W., Newbold, P. (2005). Examination of some more powerful modifications of the Dickey-Fuller test. Journal of Time Series Analysis26 355–369.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Leybourne, S. J., Mills, T.C., Newbold, P. (1998a). Spurious rejections by Dickey-Fuller tests in the presence of a break under the null. Journal of Econometrics87 191–203.

    CrossRef  MATH  Google Scholar 

  • Leybourne, S., Newbold, P., Vougas, D. (1998b). Unit roots and smooth transitions. Journal of Time Series Analysis19 83–97.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Lin, C. J., Teräsvirta, T. (1994). Testing the constancy of regression parameters against continuous structural change. Journal of Econometrics62 211–228.

    CrossRef  MATH  Google Scholar 

  • Lumsdaine, R. L., Papell, D. H. (1997). Multiple trend breaks and the unit-root hypothesis. The Review of Economics and Statistics79 212–218.

    CrossRef  Google Scholar 

  • Lütkepohl, H., Müller, C, Saikkonen, P. (2001). Unit root tests for time series with a structural break when the break point is known. In Nonlinear Statistical Modeling: Essays in Honor of Takeshi Amemiya (C. Hsiao, K. Morimune, J. L. Powell, eds.) 327–348. Cambridge University Press, Cambridge.

    Google Scholar 

  • MacKinnon, J. G. (1991). Critical Values for Co-Integration Tests. In Long-Run Economic Relationships (R. F. Engle and C. W. J. Granger, eds.), 267–276. Oxford University Press, Oxford.

    Google Scholar 

  • Montañés, A., Reyes, M. (1998). Effect of a shift in the trend function on the Dickey-Fuller unit root test. Econometric Theory14 355–363.

    CrossRef  MathSciNet  Google Scholar 

  • Nankervis, J. C., Savin, N. E. (1985). Testing the autoregressive parameter with the t statistic. Journal of Econometrics27 143–161.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Nelson, C.R., Kang, H. (1981). Spurious periodicity in inappropriately de-trended time series. Econometrica49 741–751.

    CrossRef  MATH  Google Scholar 

  • Nelson, C. R.; Plosser, C. I. (1982). Trends and random walks in macro-economic time series: Some evidence and implications. Journal of Monetary Economics10 139–162.

    CrossRef  Google Scholar 

  • Ng, S., Perron, P. (1995). Unit root tests in ARMA models with data-dependent methods for the selection of the truncation lag. Journal of the American Statistical Association90 268–281.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Ng, S., Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica69 1519–1554.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Ouliaris, S., Park, J. Y., Phillips, P. C.B. (1989). Testing for a unit root in the presence of a maintained trend. In Advances in Econometrics and Modelling (B. Raj, ed.), 7–28. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Park, J.Y., Sung, J. (1994). Testing for unit roots in models with structural change. Econometric Theory10 917–936.

    CrossRef  MathSciNet  Google Scholar 

  • Perron, P. (1988). Trends and random walks in macroeconomic time series: Further evidence from a new approach. Journal of Economic Dynamics and Control12 297–332.

    CrossRef  MathSciNet  Google Scholar 

  • Perron, P. (1989). Testing for a random walk: A simulation experiment of power when the sampling interval is varied. In Advances in Econometrics and Modelling (B. Raj, ed.), 47–68. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Perron, P. (1989a). The great crash, the oil price shock, and the unit root hypothesis. Econometrica57 1362–1401.

    CrossRef  Google Scholar 

  • Perron, P. (1990). Testing for a unit root in a time series with a changing mean. Journal of Business & Economic Statistics8 153–162.

    CrossRef  Google Scholar 

  • Perron, P. (1994). Trend, unit root and structural change in macroeconomic time series. In Cointegration for the Applied Economist (B.B. Rao, ed.), 113–146. St. Martin’s Press, New York.

    Google Scholar 

  • Perron, P., Vogelsang, T. J. (1992). Testing for a unit root in a, time series with a changing mean: Corrections and Extensions. Journal of Business & Economic Statistics10 467–470.

    CrossRef  Google Scholar 

  • Perron, P., Vogelsang, T. J. (1993). Erratum. Econometrica61 248–249.

    CrossRef  Google Scholar 

  • Phillips, P. C. B. (1986). Understanding spurious regressions in econometrics. Journal of Econometrics33 311–340.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Phillips, P. C. B. (1987). Time series regression with a unit root. Econometrica55 277–301.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Phillips, P. C. B. (1987a). Towards a unified asymptotic theory for autoregression. Biometrika74 535–47.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Phillips, P.C.B., Perron, P. (1988). Testing for a unit root in time series regression. Biometrika75 335–346.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Phillips, P.C.B., Xiao, Z. (1998). A primer on unit root testing. Journal of Economic Surveys12 423–469.

    CrossRef  Google Scholar 

  • Rappoport, P., Reichlin, L. (1989). Segmented trends and nonstationary time series. The Economic Journal99 168–177.

    CrossRef  Google Scholar 

  • Said, S. E., Dickey, D. A. (1984). Testing for unit roots in ARMA(p,q)-models with unknown p and q. Biometrika71 599–607.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Said, S. E., Dickey, D. A. (1985). Hypothesis testing in ARIMA(p, 1, q) models. Journal of the American Statistical Association80 369–374.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Saikkonen, P., Lütkepohl, H. (2001). Testing for unit roots in time series with level shifts. Allgemeines Statistisches Archiv85 1–25.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Saikkonen, P., Lütkepohl, H. (2002). Testing for a unit root in a time series with a level shift at unknown time. Econometric Theory18 313–348.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business & Economic Statistics7 147–158.

    CrossRef  Google Scholar 

  • Shiller, R. J., Perron, P. (1985). Testing the random walk hypothesis. Economics Letters18 381–386.

    CrossRef  Google Scholar 

  • Shin, D.W., So, B. S. (2001). Recursive mean adjustment for unit root tests. Journal of Time Series Analysis22 595–612.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Stock, J.H. (1994). Unit roots, structural breaks and trends. In Handbook of Econometrics, Volume IV (R. F. Engle, D.L. McFadden, eds.), 2739–2841. Elsevier, Amsterdam.

    Google Scholar 

  • Taylor, A.M.R, (2002). Regression-based unit root tests with recursive mean adjustment for seasonal and non-seasonal time series. Journal of Business & Economic Statistics20 269–281.

    CrossRef  MathSciNet  Google Scholar 

  • West, K. D. (1987). A note on the power of least squares tests for a unit root. Economics Letters24 249–252.

    CrossRef  MathSciNet  Google Scholar 

  • Valkanov, R. (2005). Functional central limit theorem approximations and the distribution of the Dickey-Fuller test with strongly heteroskedastic data. Economics Letters86 427–433.

    CrossRef  MathSciNet  Google Scholar 

  • Xiao, Z., Phillips, P. C. B. (1998). An ADF coefficient test for a unit root in ARMA models of unknown order with empirical applications to US economy. Econometrics Journal1 27–44.

    CrossRef  MATH  Google Scholar 

  • Zivot, E., Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics10 251–270.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Wolters, J., Hassler, U. (2006). Unit Root Testing. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_4

Download citation

Publish with us

Policies and ethics