Skip to main content

Dynamic Factor Models

  • Chapter

Abstract

Factor models can cope with many variables without running into scarce degrees of freedom problems often faced in a regression-based analysis. In this article we review recent work on dynamic factor models that have become popular in macroeconomic policy analysis and forecasting. By means of an empirical application we demonstrate that these models turn out to be useful in investigating macroeconomic problems.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altissimo, F., Bassanetti, A., Cristadoro, R., Forni, M., Hallin, M., Lippi, M., Reichlin, L. (2001). EuroCOIN: A real time coincident indicator of the euro area business cycle. CEPR Working Paper 3108.

    Google Scholar 

  • Artis, M., Banerjee, A., Marcellino, M. (2004). Factor forecasts for the UK. EUI Florence, Mimeo.

    Google Scholar 

  • Bai, J. (2003). Inferential theory for factor models of large dimensions. Economet-rica71 135–171.

    CrossRef  MATH  Google Scholar 

  • Bai, J., Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica70 191–221.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Bai, J., Ng, S. (2005). Determining the number of primitive shocks in factor models. New York University, Mimeo.

    Google Scholar 

  • Banerjee, A., Marcellino, M. (2003). Are there any reliable leading indicators for US inflation and GDP growth? IGIR Working Paper 236.

    Google Scholar 

  • Banerjee, A., Marcellino, M., Masten, I. (2003). Leading indicators for Euro area inflation and GDP growth. CEPR Working Paper 3893.

    Google Scholar 

  • Bernanke, B. S., Boivin, J. (2003). Monetary policy in a data-rich environment. Journal of Monetary Economics50 525–546.

    Google Scholar 

  • Bernanke, B. S., Boivin, J., Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics120 387–422.

    Google Scholar 

  • Bovin, J., Ng, S. (2005a). Are more data always better for factor analysis? Journal of Econometrics (forthcoming).

    Google Scholar 

  • Bovin, J., Ng, S. (2005b). Understanding and comparing factor-based forecasts. Columbia Business School, Mimeo.

    Google Scholar 

  • Breitung, J., Kretschmer, U. (2005). Identification and estimation of dynamic factors from large macroeconomic panels. University of Bonn, Mimeo.

    Google Scholar 

  • Breitung, J. (2005). Estimation and inference in dynamic factor models. University of Bonn, Mimeo.

    Google Scholar 

  • Brillinger, D. R. (1981). Time series data analysis and theory. Holt, Rinehart and Winston, New York.

    MATH  Google Scholar 

  • Camba-Mendez, G., Kapetanios, G. (2004). Forecasting Euro area inflation using dynamic factor measures of underlying inflation. ECB Working Paper 402.

    Google Scholar 

  • Catell, R. B. (1966). The Scree test for the number of factors. Multivariate Behavioral Research1 245–276.

    CrossRef  Google Scholar 

  • Chamberlain, G., Rothschild, M. (1983). Arbitrage, factor structure and mean-variance analysis in large asset markets. Econometrica51 1305–1324.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Cimadomo, J. (2003). The effects of systematic monetary policy on sectors: A factor model analysis. ECARES-Université Libre de Bruxelles, Mimeo.

    Google Scholar 

  • Cristadoro, R., Forni, M., Reichlin, L., Veronese, G. (2001). A core inflation index for the Euro area. CEPR Discussion Paper 3097.

    Google Scholar 

  • Den Reijer, A. H. J. (2005). Forecasting Dutch GDP using large scale factor models. DNB Working Paper 28.

    Google Scholar 

  • Eickmeier, S. (2004). Business cycle transmission from the US to Germany-a structural factor approach. Bundesbank Discussion Paper 12/2004, revised version.

    Google Scholar 

  • Eickmeier, S. (2005). Common stationary and non-stationary factors in the Euro area analyzed in a large-scale factor model. Bundesbank Discussion Paper 2/2005.

    Google Scholar 

  • Eickmeier, S., Breitung, J. (2005). How synchronized are central and east European economies with the Euro area? Evidence from a structural factor model. Bundesbank Discussion Paper 20/2005.

    Google Scholar 

  • Fagan, G., Henry, J., Mestre, R. (2001). An area wide model (AWM) for the Euro area. ECB Working Paper 42.

    Google Scholar 

  • Favero, C, Marcellino, M., Neglia, F. (2005). Principal components at work: The empirical analysis of monetary policy with large datasets. Journal of Applied Econometrics20 603–620.

    CrossRef  MathSciNet  Google Scholar 

  • Forni, M., Giannone, D. Lippi, F., Reichlin, L. (2004). Opening the Black Box: Structural factor models versus structural VARS. Université Libre de Brux-elles, Mimeo.

    Google Scholar 

  • Forni, M, Hallin, M., Lippi, F., Reichlin L. (2000). The generalized dynamic factor model: Identification and estimation. Review of Economics and Statistics82 540–554..

    CrossRef  Google Scholar 

  • Forni, M., Hallin, M., Lippi, F., Reichlin L. (2002). The generalized dynamic factor model: consistency and convergence rates. Journal of Econometrics82 540–554.

    Google Scholar 

  • Forni M, Hallin, M., Lippi, F., Reichlin, L. (2003). Do financial variables help forecasting inflation and real activity in the Euro area?. Journal of Monetary Economics50 1243–1255.

    CrossRef  Google Scholar 

  • Forni M., Hallin, M., Lippi, F., Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association100 830–840.

    CrossRef  MathSciNet  Google Scholar 

  • Giacomini R., White H. (2003). Tests of conditional predictive ability. Boston College Working Papers in Economics 572, Boston College Department of Economics.

    Google Scholar 

  • Giannone, D., Sala, L., Reichlin, L. (2002). Tracking Greenspan: Systematic and unsystematic monetary policy revisited. ECARES-ULB, Mimeo.

    Google Scholar 

  • Giannone, D., Sala, L., Reichlin, L. (2004). Monetary policy in real time. forthcoming in: NBER Macroeconomics Annual.

    Google Scholar 

  • Helbling, T., Bayoumi, T. (2003). Are they all in the same boat? The 2000–2001 growth slowdown and the G7-business cycle linkages. IMF Working Paper, WP/03/46.

    Google Scholar 

  • Jiménez-Rodríguez, M., M. Sánchez (2005). Oil price shocks and real GDP growth: empirical evidence for some OECD countries. Applied Economics37 201–228.

    CrossRef  Google Scholar 

  • Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrica34 183–202.

    CrossRef  Google Scholar 

  • Kapetanios, G. (2004). A note on modelling core inflation for the UK using a new dynamic factor estimation method and a large disaggregated price index dataset. Economics Letters85 63–69.

    CrossRef  MathSciNet  Google Scholar 

  • Kapetanios, G., Marcellino, M. (2003). A comparison of estimation methods for dynamic factor models of large dimensions. Queen Mary University of London, Working Paper 489.

    Google Scholar 

  • Korhonen, I. (2003). Some empirical tests on the integration of economic activity between the Euro area and the accession countries: A note. Economics of Transition11 1–20.

    CrossRef  Google Scholar 

  • Malek Mansour, J. (2003). Do national business cycles have an international origin?. Empirical Economics28 223–247.

    CrossRef  Google Scholar 

  • Marcellino, M., Stock, J. H., Watson, M. W. (2000). A dynamic factor analysis of the EMU. IGER Bocconi, Mimeo.

    Google Scholar 

  • Marcellino, M., Stock, J. H., Watson, M. W. (2003). Macroeconomic forecasting in the Euro area: vountry-specific versus Euro wide information. European Economic Review47 1–18.

    CrossRef  Google Scholar 

  • Peersman, G. (2005). What caused the early millenium slowdown? Evidence based on vector autoregressions. Journal of Applied Econometrics20 185–207.

    CrossRef  MathSciNet  Google Scholar 

  • Sala, L. (2003). Monetary policy transmission in the Euro area: A factor model approach. IGER Bocconi, Mimeo.

    Google Scholar 

  • Schumacher, C. (2005). Forecasting German GDP using alternative factor models based on large datasets. Bundesbank Discussion Paper 24/2005.

    Google Scholar 

  • Schumacher, C, Dreger, C. (2004). Estimating large-scale factor models for economic activity in Germany: Do they outperform simpler models?. Jahrbücher für Nationalökonomie und Statistik224 731–750.

    Google Scholar 

  • Stock, J. H., Watson, M. W. (1999). Forecasting inflation. Journal of Monetary Economics44 293–335.

    CrossRef  Google Scholar 

  • Stock, J. H., Watson, M. W. (2002a). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics20 147–162.

    CrossRef  MathSciNet  Google Scholar 

  • Stock, J. EL, Watson, M. W. (2002b). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association97 1167–1179.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Stock, J. H., Watson, M. W. (2005). Implications of dynamic factor models for VAR analysis. Princeton University, Mimeo.

    Google Scholar 

  • Watson, M. W. (2003). Macroeconomic forecasting using many predictors. In Advances in Economics and Econometrics: Theory and Applications. (Dewa-tripont, M., Hansen, L. P., Turnovsky, S. J. eds.), Vol. III, Eighth World Congress, Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Breitung, J., Eickmeier, S. (2006). Dynamic Factor Models. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_3

Download citation

Publish with us

Policies and ethics