Skip to main content

Survey Item Nonresponse and its Treatment

  • Chapter

Abstract

One of the most salient data problems empirical researchers face is the lack of informative responses in survey data. This contribution briefly surveys the literature on item nonresponse behavior and its determinants before it describes four approaches to address item nonresponse problems: Casewise deletion of observations, weighting, imputation, and model-based procedures. We describe the basic approaches, their strengths and weaknesses and illustrate some of their effects using a simulation study. The paper concludes with some recommendations for the applied researcher.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

We are grateful to an anonymous referee who provided helpful comments. Also we like to thank Donald B. Rubin for helpful comments and always motivating discussions as well as Ralf Münnich for inspiring discussions about raking procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnard, J., Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. Biometrika86 948–955.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B39 1–38.

    MATH  MathSciNet  Google Scholar 

  • Deville, J. C, Särndal, C. E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association87 376–382.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Deville, J.C., Särndal, C. E., Sautory, O, (1993). Generalized raking procedures in survey sampling. Journal of the American Statistical Association88 1013–1020.

    CrossRef  MATH  Google Scholar 

  • Dillman, D. A., Eltinge, J. L., Groves, R. M., Little, R. J. A. (2002). Survey nonresponse in design, data collection, and analysis. In Survey Nonresponse (R.M. Groves, D. A. Dillman, J. L. Eltinge, R.J.A. Little, eds.), 3–26. Wiley, New York.

    Google Scholar 

  • Esser, H. (1984). Determinanten des Interviewer-und Befragtenverhaltens: Probleme der theoretischen Erklärung und empirischen Untersuchung von Interviewereffekten. In Allgemeine Bevölkerungsumfrage der Sozialwissenschaften (K. Mayer, P. Schmidt, eds.), 26–71. Campus, Frankfurt.

    Google Scholar 

  • Frick, J. R., Grabka, M. M. (2003). Missing income data in the German SOEP: Incidence, imputation and its impact on the income distribution. DIW Discussion Papers 376, DIW Berlin.

    Google Scholar 

  • Gelman, A., Carlin, J. B. (2002). Poststratification and weighting adjustment. In Survey Nonresponse (R. M. Groves, D. A. Dillman, J. L. Eltinge, R. J. A. Little, eds.), 289–302. Wiley, New York.

    Google Scholar 

  • Glynn, R., Laird, N.M., Rubin, D. B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponse. In Drawing Inferences from Self-Selected Samples (H. Wainer, ed.), 119–146. Springer, New York.

    Google Scholar 

  • Groves, R. M., Dillman, D. A., Eltinge, J. L., Little, R. J. A. (2002). Survey Nonresponse. Wiley, New York.

    MATH  Google Scholar 

  • Hartley, H. O., Hocking, R. R. (1971). The analysis of incomplete data. Biometrics27 783–808.

    CrossRef  Google Scholar 

  • Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement5 475–492.

    Google Scholar 

  • Horton, N. J., Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing variables. American Statistician55 244–254.

    CrossRef  MathSciNet  Google Scholar 

  • Lee, H., Rancourt, E., Särndal, C. E. (2002). Variance estimation from survey data under single imputation. In Survey Nonresponse (R. M. Groves, D. A. Dillman, J. L. Eltinge, R. J. A. Little, eds.), 315–328. Wiley, New York.

    Google Scholar 

  • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88 125–134.

    CrossRef  MATH  Google Scholar 

  • Little, R. J. A., Rubin, D. B. (1987, 2002). Statistical analysis with missing data. 1. and 2. ed., Wiley, Hoboken, New Jersey.

    MATH  Google Scholar 

  • Madow, W. G., Olkin, I., Rubin, D.B. (1983). Incomplete Data in Sample Surveys. Academic Press, New York.

    Google Scholar 

  • McLachlan, G. J., Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley, New York.

    MATH  Google Scholar 

  • Münnich, R., Rässler, S. (2005). PRIMA: A new multiple imputation procedure for binary variables. Journal of Official Statistics (to appear).

    Google Scholar 

  • Oh, J.L., Scheuren, F. (1983). Weighting adjustment for unit nonresponse. In Incomplete Data in Sample Surveys 2 (W. G. Madow, I. Olkin, D. B. Rubin, eds.), 143–184. Academic Press, New York.

    Google Scholar 

  • Raghunathan, T. E., Rubin, D.B. (1998). Roles for Bayesian Techniques in Survey Sampling. Proceedings of the Silver Jubilee Meeting of the Statistical Society of Canada 51–55.

    Google Scholar 

  • Rässler, S., Rubin, D.B., Schenker, N. (2003). Imputation. In Encyclopedia of Social Science Research Methods (A. Bryman, M. Lewis-Beck, T.F. Liao, eds.), 477–482. Sage, Thousand Oaks.

    Google Scholar 

  • Rässler, S., Schnell, R. (2004). Multiple imputation for unit nonresponse versus weighting including a comparison with a nonresponse follow-up study. Diskussionspapier der Lehrstühle für Statistik 65/2004, Nürnberg.

    Google Scholar 

  • Riphahn, R. T., Serfling, O. (2002). Item non-response on income and wealth questions. IZA Discussion Paper No. 573, IZA Bonn.

    Google Scholar 

  • Riphahn, R. T., Serfling, O. (2005). Item non-response on income and wealth questions. Empirical Economics (to appear).

    Google Scholar 

  • Rubin, D. B. (1972). A non-iterative algorithm for least squares estimation of missing values in any analysis of variance design. The Journal of the Royal Statistical Society, Series C21 136–141.

    Google Scholar 

  • Rubin, D.B. (1974). Characterizing the estimation of parameters in incomplete-data problems. Journal of the American Statistical Association69 467–474.

    CrossRef  MATH  Google Scholar 

  • Rubin, D. B. (1976). Inference and missing data. Biometrika63 581–592.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Rubin, D.B. (1978). Multiple imputation in sample surveys-a phenomenological Bayesian approach to nonresponse. Proceedings of the Survey Research Methods Sections of the American Statistical Association 20–40.

    Google Scholar 

  • Rubin, D. B. (1987, 2004). Multiple Imputation for Nonresponse in Surveys. 1. and 2. ed., Wiley, Hoboken, New Jersey.

    Google Scholar 

  • Rubin, D. B. (1996). Multiple imputation after 18+ years (with discussion). Journal of the American Statistical Association91 473–489.

    CrossRef  MATH  Google Scholar 

  • Rubin, D. B., Schenker, N. (1986). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association81 366–374.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall, London.

    MATH  Google Scholar 

  • Schräpler, J. P. (2004). Respondent behavior in panel studies. A case study for income nonresponse by means of the Germany Socio-Economic Panel (SOEP). Sociological Methods and Research33 118–156.

    CrossRef  MathSciNet  Google Scholar 

  • Sudman, S., Bradburn, N. M., Schwarz, N. (1996). Thinking about Answers. The Application of Cognitive Processes to Survey Methodology. Jossey Bass Publishers, San Francisco.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Rässler, S., Riphahn, R.T. (2006). Survey Item Nonresponse and its Treatment. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_15

Download citation

Publish with us

Policies and ethics