Abstract
The paper first provides a short review of the most common microeconometric models including logit, probit, discrete choice, duration models, models for count data and Tobit-type models. In the second part we consider the situation that the micro data have undergone some anonymization procedure which has become an important issue since otherwise confidentiality would not be guaranteed. We shortly describe the most important approaches for data protection which also can be seen as creating errors of measurement by purpose. We also consider the possibility of correcting the estimation procedure while taking into account the anonymization procedure. We illustrate this for the case of binary data which are anonymized by ‘post-randomization’ and which are used in a probit model. We show the effect of ‘naive’ estimation, i. e. when disregarding the anonymization procedure. We also show that a ‘corrected’ estimate is available which is satisfactory in statistical terms. This is also true if parameters of the anonymization procedure have to be estimated, too.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Research in this paper is related to the project “Faktische Anonymisierung wirtschaftsstatistischer Einzeldaten” financed by German Ministry of Research and Technology.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Amemiya, T. (1985). Advanced Econometrics. Basil Blackwell, Oxford.
Cameron, A. C, Trivedi, P. (2005). Microeconometrics. Methods and Applications. Cambridge University Press, Cambridge.
Greene, W. H. (2000). Econometric Analysis. 4th ed., Prentice Hall, Upper Saddle River.
Han, A. K. (1987). Non-parametric analysis of a generalized regression model: The maximum rank correlation estimator. Journal of Econometrics35 303–316.
Hausman, J. A., Abrevaya, J., Scott-Morton, F.M. (1998). Misclassification of the dependent variable in a discrete-response setting. Journal of Econometrics87 239–269.
Kommission zur Verbesserung der informationellen Infrastruktur (ed.) (2001). Wege zu einer besseren informationellen Infrastruktur. Nomos, Wiesbaden.
Kooiman, P., L. Willenborg, Gouweleeuw, J. (1997). PRAM: a method for disclosure limitation of micro data., http://www.cbs.nl/sdc/ruis.htm.
Lechner, S., Pohlmeier, W. (2003). Schätzung ökonometrischer Modelle auf der Grundlage anonymisierter Daten. In Anonymisierung wirtschaftsstatistischer Einzeldaten (R. Gnoss, G. Ronning, eds.), Forum der Bundesstatistik, 42 115–137.
Lechner, S., Pohlmeier, W. (2005). Data masking by noise addition and the estimation of nonparametric regression models. Jahrbücher für Nationalökonomie und Statistik225 517–528.
Pohlmeier, W., Ronning, G., Wagner, J. (2005). Econometrics of anonymized micro data. Jahrbücher für Nationalökonomie und Statistik225 Sonderband.
Ronning, G. (1991). Mikroökonometrie. Springer, Berlin.
Ronning, G. (1996). Ökonometrie. In Springers Handbuch der Volkswirtschaftslehre (A. Börsch-Supan, J.v. Hagen, P. J. J. Welfens, eds.), 78–134. Springer, Berlin.
Ronning, G. (2005). Randomized response and the binary probit model. Economics Letters86 221–228.
Ronning, G., Gnoss, R. (2003). Anonymisierung wirtschaftsstatistischer Einzeldaten. Statistisches Bundesamt. Forum der Bundesstatistik, Band 42, Wiesbaden.
Ronning, G, Rosemann, M., Strotmann, H. (2005a). Post-randomization under test: Estimation of the probit model. Jahrbücher für Nationalökonomie und Statistik225 544–566.
Ronning, G., Sturm, R., Höhne, J., Lenz, J., Rosemann, M., Scheffler, M., Vorgrimler, D. (2005b). Handbuch zur Anonymisierung wirtschaftsstatistischer Mikrodaten. Statistisches Bundesamt, Wiesbaden, Reihe „Statistik und Wissenschaft“, Band 4, 2005.
Särndal, C.-E., Swensson, B., Wretman, J, (1992). Model Assisted Survey Sampling. Springer, New York.
Schmid, M., Schneeweiss, H. (2005). The effect of microaggregation procedures on the estimation of linear models. Jahrbücher für Nationalökonomie und Statistik225 529–543.
van den Hout, A., van der Heijden, P. G. M. (2002). Randomized response, statistical disclosure control and misclassification: A review. International Statistical Review70 2–69.
Verbeek, M. (2000). A Guide to Modern Econometrics. Wiley, Chichester.
Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association57 622–627.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer Berlin · Heidelberg
About this chapter
Cite this chapter
Ronning, G. (2006). Microeconometric Models and Anonymized Micro Data. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_11
Download citation
DOI: https://doi.org/10.1007/3-540-32693-6_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32692-2
Online ISBN: 978-3-540-32693-9
eBook Packages: Business and EconomicsEconomics and Finance (R0)
