Skip to main content

Nonparametric Models and Their Estimation

  • Chapter

Abstract

Nonparametric models have become more and more popular over the last two decades. One reason for their popularity is software availability, which easily allows to fit smooth but otherwise unspecified functions to data. A benefit of the models is that the functional shape of a regression function is not prespecified in advance, but determined by the data. Clearly this allows for more insight which can be interpreted on a substance matter level.

This paper gives an overview of available fitting routines, commonly called smoothing procedures. Moreover, a number of extensions to classical scatterplot smoothing are discussed, with examples supporting the advantages of the routines.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical Mathematics22 203–217.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Akritas, M., Politis, D. (2003). Recent Advances and Trends in Nonparametric Statistics. North Holland, Amsterdam.

    Google Scholar 

  • Bowman, A.W., Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Chiarella, C, Flaschel, P. (2000). The Dynamics of Keynesian Monetary Growth: Macro Foundations. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Association, Series B34 187–220.

    MATH  Google Scholar 

  • Crainiceanu, C, Ruppert, D., Claeskens, G., Wand, M. (2005). Exact likelihood ratio test for penalized splines. Biometrika92 91–103.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Dalgaard, P. (2002). Introductory Statistics with R. Springer, New York.

    MATH  Google Scholar 

  • de Boor (1978). A Practical Guide to Splines. Springer, Berlin.

    MATH  Google Scholar 

  • Efron, B. (2001). Selection criteria for scatterplot smoothers. The Annals of Statistics29 470–504.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Eilers, P., Marx, B. (1996). Flexible smoothing with B-splines and penalties. Statistical Science11 89–121.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression. Dekker, New York.

    MATH  Google Scholar 

  • Fahrmeir, L., Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd ed., Springer, New York.

    MATH  Google Scholar 

  • Fan, J., Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Chapman and Hall, London.

    MATH  Google Scholar 

  • Fan, J., Yao, O. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York.

    MATH  Google Scholar 

  • Flaschel, P., Kauermann, G., Semmler, W. (2005). Testing wage and price Phillips curves for the United States. Metroeconomica (to appear).

    Google Scholar 

  • Grambsch, P.M., Therneau, T. M. (2000). Modelling Survival Data: Extending the Cox Model. Springer, New York.

    Google Scholar 

  • Green, D. J., Silverman, B.W. (1994). Nonparametric Regression and Generalized Linear Models. Chapman and Hall, London.

    MATH  Google Scholar 

  • Gu, C, Wahba, G. (1991). Smoothing spline ANOVA with component-wise Bayesi-an confidence intervals. Journal of Computational and Graphical Statistics2 97–117.

    CrossRef  MathSciNet  Google Scholar 

  • Härdle, W., Hall, W., Marron, J. S. ((). 1. 98 8.). How far are automatically chosen regression smoothing parameter selectors from their optimum? Journal of the American Statistical Association 83 86–101

    CrossRef  Google Scholar 

  • Härdle, W., Hall, W., Marron, J. S. (1992). Regression smoothing parameters that are not far from their optimum. Journal of the American Statistical Association87 227–233.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Härdle, W., Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. The Annals of Statistics21 1926–1947.

    MATH  MathSciNet  Google Scholar 

  • Härdle, W., Lütkepohl, H., Chen, R. (1997). A review of nonparametric time series analysis. International Statistical Review65 49–72.

    MATH  Google Scholar 

  • Härdle, W., Hlavka, Z., Klinke, S. (2000). XploRe, Application Guide. Springer, Berlin.

    MATH  Google Scholar 

  • Härdle, W., Müller, M., Sperlich, S., Werwatz, A. (2004). Nonparametric and Semiparametric Models. Springer, Berlin.

    MATH  Google Scholar 

  • Hastie, T. (1996). Pseudosplines. Journal of the Royal Statistical Society, Series B58 379–396.

    MATH  MathSciNet  Google Scholar 

  • Hastie, T., Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London.

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society, Series B55 757–796.

    MATH  MathSciNet  Google Scholar 

  • Hurvich, C.M., Simonoff, J.S., Tsai, C. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society, Series B60 271–293.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Kauermann, G. (2000). Modelling longitudinal data with ordinal response by varying coefficients. Biometrics56 692–698.

    CrossRef  MATH  PubMed  CAS  Google Scholar 

  • Kauermann, G. (2004). A note on smoothing parameter selection for penalized spline smoothing. Journal of Statistical Planing and Inference127 53–69.

    CrossRef  MathSciNet  Google Scholar 

  • Kauermann, G. (2005). Penalized spline fitting in multivariable survival models with varying coefficients. Computational Statistics and Data Analysis49 169–186.

    CrossRef  MathSciNet  Google Scholar 

  • Kauermann, G., Tutz, G. (2000). Local likelihood estimation in varying-coefficient models including additive bias correction. Journal of Nonparametric Statistics12 343–371.

    MATH  MathSciNet  Google Scholar 

  • Kauermann, G., Tutz, G. (2001). Testing generalized linear and semiparametric models against smooth alternatives. Journal of the Royal Statistical Society, Series B63 147–166.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Kauermann, G., Tutz, G., Brüderl, J. (2005). The survival of newly founded firms: A case study into varying-coefficient models. Journal of the Royal Statistical Society, Series A168 145–158.

    MATH  Google Scholar 

  • Loader, C. (1999). Local Regression and Likelihood. Springer, Berlin.

    MATH  Google Scholar 

  • Marron, J.S., Chaudhuri, P. (1999). SiZer for exploration of structures in curves. Journal of the American Statistical Association94 807–823.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. 2nd ed., Chapman and Hall, New York.

    MATH  Google Scholar 

  • Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and Application9 141–142.

    CrossRef  Google Scholar 

  • Nychka, D. (2000). Spatial process estimates as smoothers. In Smoothing and Regression. Approaches, Computation and Application (Schimek, ed.), Wiley, New York.

    Google Scholar 

  • O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems. Statistical Science1 502–518.

    MathSciNet  Google Scholar 

  • Opsomer, J.D., Wang, Y., Yang, Y. (2001). Nonparametric regression with correlated errors. Statistical Science16 134–153.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Pagan, R., Ullah, A. (1999). Nonparametric Econometrics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Phillips, A. W. (1958). The relation between unemployment and the rate of change of money wage rates in the United Kingdom, 1861–1957. Economica25 283–299.

    Google Scholar 

  • Reinsch, C. H. (1967). Smoothing by spline functions. Numerical Mathematics10 177–183.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Rice, J. A. (1984). Bandwidth choice for nonparametric regression. Annals of Statistics12 1215–1230.

    MATH  MathSciNet  Google Scholar 

  • Ripley, B.D., Venables, W. N. (2002). Modern Applied Statistics with S. 4th ed., Springer, New York.

    MATH  Google Scholar 

  • Ruppert, D. (2004). Statistics and Finance. Springer, New York.

    MATH  Google Scholar 

  • Ruppert, R., Wand, M. P., Carroll, R. J. (2003). Semiparametric Regression. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Simonoff, J. S. (1996). Smoothing Methods in Statistics. Springer, New York.

    MATH  Google Scholar 

  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B36 111–147.

    MATH  Google Scholar 

  • Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics18 223–249.

    MATH  Google Scholar 

  • Wahba, G. (1990). Regularization and cross validation methods for nonlinear implicit, ill-posed inverse problems. In Geophysical Data Inversion Methods and Applications (A. Vogel, C. Ofoegbu, R. Gorenflo and B. Ursin, eds.), 3–13. Vieweg, Wiesbaden-Braunschweig.

    Google Scholar 

  • Watson, G. S. (1964). Smooth regression analysis. Sankhyā, Series A26 359–372.

    MATH  Google Scholar 

  • Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society, Series B65 95–114.

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin · Heidelberg

About this chapter

Cite this chapter

Kauermann, G. (2006). Nonparametric Models and Their Estimation. In: Hübler, O., Frohn, J. (eds) Modern Econometric Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32693-6_10

Download citation

Publish with us

Policies and ethics