Skip to main content

Formation of Cortical Microtubules in a Cell-Free System Prepared from Plasma Membrane Ghosts and a Cytosolic Extract of BY-2 Cells

  • Chapter
  • 599 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 58))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asbury CL (2005) Kinesin: world’s tiniest biped. Curr Opin Cell Biol 17:89–97

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5:967–971

    Article  PubMed  CAS  Google Scholar 

  • Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78

    Article  PubMed  CAS  Google Scholar 

  • Dibbayawan TP, Harper JDI, Marc J (2001) A γ-tubulin antibody against a plant peptide sequence localises to cell division-specific microtubule arrays and organelles in plants. Micron 32:671–678

    Article  PubMed  CAS  Google Scholar 

  • Drykova D, Cenklova V, Sulimenko V, Volc J, Draber P, Binarova P (2003) Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. Plant Cell 15:465–480

    Article  PubMed  CAS  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    PubMed  CAS  Google Scholar 

  • Falconer MM, Donaldson G, Seagull RW (1988) MTOCs in higher-plant cells — an immunofluores-cent study of microtubule assembly sites following depolymerization by APM. Protoplasma 144:46–55

    Article  Google Scholar 

  • Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93:277–287

    Article  PubMed  CAS  Google Scholar 

  • Hasezawa S, Nagata T (1991) Dynamic organization of plant microtubules at the three distinct transition points during the cell cycle progression of synchronized tobacco BY-2 cells. Bot Acta 104:206–211

    Google Scholar 

  • Hoffman JC, Vaughn KC, Joshi HC (1994) Structural and immunocytochemical characterization of microtubule-organizing centers in pteridophyte spermatogenous cells. Protoplasma 179:46–60

    Article  Google Scholar 

  • Horio T, Oakley BR (2003) Expression of Arabidopsis γ-tubulin in fission yeast reveals conserved and novel functions of γ-tubulin. Plant Physiol 133:1926–1934

    Article  PubMed  CAS  Google Scholar 

  • Janson ME, Setty TG, Paoletti A, Tran PT (2005) Efficient formation of bipolar microtubule bundles requires microtubule-bound gamma-tubulin complexes. J Cell Biol 169:297–308

    Article  PubMed  CAS  Google Scholar 

  • Job D, Valiron O, Oakley B (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    Article  PubMed  CAS  Google Scholar 

  • Joshi HC, Palevitz BA (1996) γ-Tubulin and microtubule organization in plants. Trends Cell Biol 6:41–44

    Article  PubMed  CAS  Google Scholar 

  • Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42:723–732

    Article  PubMed  CAS  Google Scholar 

  • Kumagai F, Nagata T, Yahara N, Moriyama Y, Horio T, Naoi K, Hashimoto T, Murata T, Hasezawa S (2003) γ-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells. Eur J Cell Biol 82:43–51

    Article  PubMed  CAS  Google Scholar 

  • Lambert AM (1993) Microtubule-organizing centers in higher plants. Curr Opin Cell Biol 5:116–122

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. JCell Sci 104:1217–1228

    CAS  Google Scholar 

  • Lloyd C, Chan J (2004) Microtubules and the shape of plants to come. Nat Rev Mol Cell Biol 5:13–22

    Article  PubMed  CAS  Google Scholar 

  • Lloyd CW (1991) The cytoskeletal basis of plant growth and form. Academic Press, London.

    Google Scholar 

  • Mineyuki Y (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Article  Google Scholar 

  • Moritz M, Braunfeld MB, Sedat JW, Alberts B, Agard DA (1995) Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378:638–640

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR (2000) An abundance of tubulins. Trends Cell Biol 10:537–542

    Article  PubMed  CAS  Google Scholar 

  • Ovechkina Y, Oakley BR (2001) Gamma tubulin in plant cells. Method Cell Biol 67:195–212

    CAS  Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa K, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) Gamma-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    Article  PubMed  CAS  Google Scholar 

  • Smirnova EA, Bajer AS (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskel 27:219–233

    Article  CAS  Google Scholar 

  • Sonobe S (1990) ATP-dependent depolymerization of cortical microtubules by an extract in tobacco BY-2 Cells. Plant Cell Physiol 31:1147–1153

    CAS  Google Scholar 

  • Sonobe S (1996) Studies on the plant cytoskeleton using miniprotoplasts of tobacco BY-2 cells. J Plant Res 109:437–448

    Article  Google Scholar 

  • Sonobe S, Takahashi S (1994) Association of microtubules with the plasma-membrane of tobacco BY-2 cells in vitro. Plant Cell Physiol 35:451–460

    CAS  Google Scholar 

  • Stearns T, Kirschner M (1994) In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell 76:623–637

    Article  PubMed  CAS  Google Scholar 

  • Stoppin-Mellet V, Peter C, Lambert AM (2000) Distribution of gamma-tubulin in higher plant cells: cytosolic gamma-tubulin is part of high molecular weight complexes. Plant Biol 2:290–296

    Article  CAS  Google Scholar 

  • Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, Karsenti E, Hyman AA (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2:13–19

    Article  PubMed  CAS  Google Scholar 

  • Walczak CE, Mitchison TJ, Desai A (1996) XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84:37–47

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Williamson RE (1989) Reassembly of microtubules inNitella tasmanica — assembly of cortical microtubules in branching clusters and its relevance to steady-state microtubule assembly. J Cell Sci 93:705–714

    Google Scholar 

  • Zheng Y, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378:578–583

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murata, T., Hasebe, M. (2006). Formation of Cortical Microtubules in a Cell-Free System Prepared from Plasma Membrane Ghosts and a Cytosolic Extract of BY-2 Cells. In: Nagata, T., Matsuoka, K., Inzé, D. (eds) Tobacco BY-2 Cells: From Cellular Dynamics to Omics. Biotechnology in Agriculture and Forestry, vol 58. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32674-X_3

Download citation

Publish with us

Policies and ethics