Skip to main content

The Use of Tobacco BY-2 Cells to Elucidate the Biosynthesis and Essential Functions of Isoprenoids

  • Chapter
Book cover Tobacco BY-2 Cells: From Cellular Dynamics to Omics

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 58))

  • 601 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts AW, Chen J, Kuron G, Hunt, V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monagan R, Curries S, Stapley E, Albers-Schönberg G, Hensens O, Hirshfield J, Hogsteen K, Liesch J, Springer J (1980) Mevinolin, a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  PubMed  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  PubMed  CAS  Google Scholar 

  • Bach TJ (1986) Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21:82–88

    PubMed  CAS  Google Scholar 

  • Bach TJ (1987) Synthesis and metabolism of mevalonic acid in plants. Plant Physiol Biochem 25:163–178

    CAS  Google Scholar 

  • Bach TJ (1995) Some new aspects of isoprenoid biosynthesis in plants — a review. Lipids 30:191–202

    PubMed  CAS  Google Scholar 

  • Bach TJ, Lichtenthaler HK (1983) Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant 59:50–60

    Article  CAS  Google Scholar 

  • Bach TJ, Rogers DH, Rudney H (1986) Detergent-solubilization, purification, and characterization of 3-hydroxy-3-methylglutaryl-CoA reductase from radish seedlings. Eur J Biochem 154:103–111

    Article  PubMed  CAS  Google Scholar 

  • Bach TJ, Wettstein A, Boronat A, Ferrer A, Enjuto M, Gruissem W, Narita JO (1991a) Properties and molecular cloning of plant HMG-CoA reductase. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists’ Society, Champaign, Illinois, pp 29–49

    Google Scholar 

  • Bach TJ, Boronat A, Caelles C, Ferrer A, Weber T, Wettstein A (1991b) Aspects related to mevalonate biosynthesis in plants. Lipids 26:637–648

    PubMed  CAS  Google Scholar 

  • Bach TJ, Boronat A, Campos N, Ferrer A, Vollack K-U (1999) Mevalonate biosynthesis in plants. Crit Rev Biochem Mol Biol 34:107–122

    Article  PubMed  CAS  Google Scholar 

  • Baxter A, Fitzgerald BJ, Hutson JL, McCarty AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. J Biol Chem 267:11705–11708

    PubMed  CAS  Google Scholar 

  • Bentinger M, Grunler J, Peterson E, Swiezewska E, Dallner G (1998) Phosphorylation of farnesol in rat liver microsomes: properties of farnesol kinase and farnesyl phosphate kinase. Arch Biochem Biophys 15:191–198

    Article  Google Scholar 

  • Benveniste P (2004a) Sterol metabolism. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, Maryland, http://www.bioone.org/bioone/?request=get-document&issn=1543-8120

    Google Scholar 

  • Benveniste P (2004b) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom JD, Kurtz MM, Rew DJ, Amend AM, Karkas JD, Bostedor RG, Bansal VS, Dufresne C, VanMiddlesworth FL, Hensens OD, Liesch JM, Zink DL, Wilson KE, Onishi J, Milligan JA, Bills G, Kaplan L, Omstead MN, Jenkins RG, Huang L, Meinz MS, Quinn L, Burgh RW, Kong YL, Mochales S, Mojena M, Martin I, Pelaez F, Diez MT, Alberts AW (1993) Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci USA 90:80–88

    Article  PubMed  CAS  Google Scholar 

  • Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane DE (ed) Comprehensive natural product chemistry, isoprenoids including steroids and carotenoids, vol 2. Pergamon Press, Tarrytown, New York, pp 15–44

    Google Scholar 

  • Bolte S, Talbot C, Boutté Y, Catrice O, Read ND, Satiat-Jeunemaître B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  PubMed  CAS  Google Scholar 

  • Bonetta D, Bayliss P, Sun S, Sage T, McCourt P (2000) Farnesylation is involved in meristem organization in Arabidopsis. Planta 211:182–190

    Article  PubMed  CAS  Google Scholar 

  • Casey J, Threlfall D (1978) Formation of 3-hexaprenyl-4-hydroxybenzoate by matrix-free mitochondrial membrane-rich preparations of yeast. Biochim Biophys Acta 530:487–502

    PubMed  CAS  Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    PubMed  CAS  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalysed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    PubMed  CAS  Google Scholar 

  • Charon L, Hoeffler J-F, Pale-Grosdemange C, Lois LM, Campos N, Boronat A, Rohmer M (2000) Deuterium-labelled isotopomers of 2-C-methyl-D-erythritol as tools for the elucidation of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 346:737–742

    Article  PubMed  CAS  Google Scholar 

  • Clarke S (1992) Protein isoprenylation and methylation at a carboxyterminal cysteine residue. Annu Rev Biochem 61:355–386

    Article  PubMed  CAS  Google Scholar 

  • Cornish K (1993) The separate roles of plant cis and trans prenyl transferases in cis-polyisoprene biosynthesis. Eur J Biochem 218:267–271

    Article  PubMed  CAS  Google Scholar 

  • Correll CC, Ng L, Edwards PA (1994) Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutarylcoenzyme A reductase. J Biol Chem 269:17390–17393

    PubMed  CAS  Google Scholar 

  • Crick DC, Andres DA, Waechter CJ (1995) Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells. Biochem Biophys Res Commun 211:590–599

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, pp 1250–1318

    Google Scholar 

  • Crowell DN (2000) Functional implications of protein isoprenylation in plants. Progr Lipid Res 39:393–408

    Article  CAS  Google Scholar 

  • Crowell DN, Randall SK (1996) Protein farnesylation and phytohormone signal transduction. Trends Plant Sci 1:407–408

    Article  Google Scholar 

  • Crowell DN, Salaz MS (1992) Inhibition of growth of cultured tobacco cells at low concentrations of lovastatin is reversed by cytokinin. Plant Physiol 100:2090–2095

    Article  PubMed  CAS  Google Scholar 

  • Cunillera N, Boronat A, Ferrer A (1997) The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J Biol Chem 272:15381–15388

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FX Jr, Gantt E (2000) Identification of multi-gene families encoding isopentenyl diphosphate isomerase in plants by heterologous complementation in Escherichia coli. Plant Cell Physiol 41:119–123

    PubMed  CAS  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    PubMed  CAS  Google Scholar 

  • Disch A, Hemmerlin A, Bach TJ, Rohmer M (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J 331:615–621

    PubMed  CAS  Google Scholar 

  • Döll M, Schindler S, Lichtenthaler HK, Bach TJ (1984) Differential inhibition by mevinolin of prenyllipid accumulation in cell suspension cultures of Silybum marianum L. In: Siegenthaler P-A, Eichenberger W (eds) Structure, function and metabolism of plant lipids. Elsevier, Amsterdam, pp 277–280

    Google Scholar 

  • Edwards PA, Ericsson J (1999) Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem 68:157–185

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221–R233

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  PubMed  CAS  Google Scholar 

  • Ericsson J (1992) Prenyltransferases: branch-point enzymes in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Doctoral Dissertation, Department of Biochemistry, Arrhenius Laboratories of Natural Sciences, Akademitryk AB, Edsbruk

    Google Scholar 

  • Ericsson J, Runquist M, Thelin A, Andersson M, Chojnacki T, Dallner G (1993) Distribution of prenyltransferases in rat tissues: evidence for a cytosolic all-trans-geranylgeranyl diphosphate synthase. J Biol Chem 268:832–838

    PubMed  CAS  Google Scholar 

  • Fatland BL, Nikolau BJ, Wurtele ES (2005) Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell 17:182–203

    Article  PubMed  CAS  Google Scholar 

  • Flesch G, Rohmer M (1988) Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem 175:405–411

    Article  PubMed  CAS  Google Scholar 

  • Flügge U-L, Gao W (2005) Transport of isoprenoid intermediates across chloroplast envelope membranes. Plant Biol 7:91–97

    Article  PubMed  CAS  Google Scholar 

  • Galichet A, Gruissem W (2003) Protein farnesylation in plants: old friends and new targets. Curr Opin Plant Biol 6:530–535

    Article  PubMed  CAS  Google Scholar 

  • Giner JL, Jaun B (1998) Biosynthesis of isoprenoids in Escherichia coli: retention of the methyl H-atoms of 1-deoxy-D-xylulose. Tetrahedron Lett 39:8021–8022

    Article  CAS  Google Scholar 

  • Giner JL, Jaun B, Arigoni D (1998) Biosynthesis of isoprenoids in Escherichia coli: the fate of the 3-H and 4-H atoms of 1-deoxy-D-xylulose. J Chem Soc Chem Commun 17:1857–1858

    Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  • Gondet L, Weber T, Maillot-Vernier P, Benveniste P, Bach TJ (1992) Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun 186:888–893

    Article  PubMed  CAS  Google Scholar 

  • Gondet L, Bronner R, Benveniste P (1994) Regulation of sterol content in membranes by subcellular compartmentation of steryl-esters accumulating in a sterol-overproducing tobacco mutant. Plant Physiol 105:509–518

    PubMed  CAS  Google Scholar 

  • Hanson JB (1985) Membrane transport systems of plant mitochondria. In: Douce R, Day DA (eds) Higher plant cell respiration. Encycl Plant Physiol New Ser 18:248–280

    Google Scholar 

  • Hartig K, Beck E (2005) Assessment of lovastatin application as tool in probing cytokinin-mediated cell cycle regulation. Physiol Plant 125:260–267

    Article  CAS  Google Scholar 

  • Hartmann M-A (1998) Plant sterols and the membrane environment. Trends Plant Sci 5:170–175

    Article  Google Scholar 

  • Hartmann M-A (2004) Sterol metabolism and functions in higher plants. Lipid Metab Membrane Biogenesis 6:183–211

    CAS  Google Scholar 

  • Hartmann M-A, Bach TJ (2001) Incorporation of all-trans-farnesol into sterols and ubiquinone in Nicotiana tabacum L. cv Bright Yellow cell cultures. Tetrahedron Lett 42:655–657

    Article  CAS  Google Scholar 

  • Hemmerlin A (1997) Etude du rôle demolécules d’origine isoprénique (dérivées du mévalonate) dans la régulation du cycle cellulaire d’une suspension de cellules Nicotiana tabacum Bright Yellow 2 (TBY-2). Thèse doctorale, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Hemmerlin A, Bach TJ (1998) Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J 14:65–74

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Bach TJ (2000) Farnesol-induced cell death and stimulation of HMG-CoA reductase activity in tobacco BY-2 cells. Plant Physiol 123:1257–1268

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Brown SC, Bach TJ (1999) Function of mevalonate in tobacco cell proliferation. Acta Bot Gall 146:85–100

    CAS  Google Scholar 

  • Hemmerlin A, Fischt I, Bach TJ (2000) Differential interaction of branch-specific inhibitors of isoprenoid biosynthesis with cell cycle progression in tobacco BY-2 cells. Physiol Plant 110:343–350

    Google Scholar 

  • Hemmerlin A, Hoeffler J-F, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco Bright Yellow-2 cells. J Biol Chem 278:26666–26676

    Article  PubMed  CAS  Google Scholar 

  • Hemmerlin A, Gerber E, Feldtrauer J-F, Wentzinger L, Hartmann M-A, Tritsch D, Hoeffler J-F, Rohmer M, Bach TJ (2004) A review of tobacco BY-2 cells as an excellent system to study the biosynthesis and function of sterols and other isoprenoids. Lipids 39:723–735

    PubMed  CAS  Google Scholar 

  • Hemmerlin A, Reents R, Mutterer J, Feldtrauer J-F, Waldmann H, Bach TJ (2006) Monitoring farnesol-induced toxicity in tobacco BY-2 cells with a fluorescent analog. Arch Biochem Biophys 448:93–103

    Article  PubMed  CAS  Google Scholar 

  • Hirooka K, Izumi Y, An CI, Nakazawa Y, Fukusaki E, Kobayashi A (2005) Functional analysis of two solanesyl diphosphate synthases from Arabidopsis thaliana. Biosci Biotechnol Biochem 69:592–601

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler J-F, Hemmerlin A, Grosdemange-Billiard C, Bach TJ, Rohmer M (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366:573–583

    Article  PubMed  CAS  Google Scholar 

  • Ikeda T, Matsumoto T, Noguchi M (1976) Formation of ubiquinone by tobacco plant cells in suspension culture. Phytochemistry 15:568–569

    Article  CAS  Google Scholar 

  • Ikeda T, Matsumoto T, Noguchi M (1978) Effect of auxins on the formation of ubiquinone by tobacco plant cells in suspension culture. Phytochemistry 17:1879–1883

    Article  CAS  Google Scholar 

  • Ikeda T, Matsumoto T, Obi Y, Kisaki T, Noguchi M (1981) Characteristics of cultured tobacco cell strains producing high levels of ubiquinone-10 selected by a cell cloning technique. Agric Biol Chem 45:2259–2263

    CAS  Google Scholar 

  • Ishii K, Sagami H, Ogura K (1983) Decaprenyl pyrophosphate synthetase from mitochondria of pig liver. Biochem Biophys Res Commun 116:500–506

    Article  PubMed  CAS  Google Scholar 

  • Jiang G, McKenzie TL, Conrad DG, Shechter I (1993) Transcriptional regulation by lovastatin and 25-hydroxycholesterol in HepG2 cells andmolecular cloning and expression of the cDNA for the human hepatic squalene synthase. J Biol Chem 268:12818–12824

    PubMed  CAS  Google Scholar 

  • Jux A, Gleixner G, Boland W (2001) Classification of terpenoids according to the methylery-thritolphosphate or the mevalonate pathway with natural 12C/13C isotope ratios: dynamic allocation of resources in induced plants. Angew Chem Int Ed 40:2091–2093

    Article  CAS  Google Scholar 

  • Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis-and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279:14049–14054

    Article  PubMed  CAS  Google Scholar 

  • Keller RK, Cannons A, Vilsaint F, Zhao Z, Ness GC (1993) Identification and regulation of rat squalene synthetase mRNA. Arch Biochem Biophys 302:304–306

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  PubMed  CAS  Google Scholar 

  • Kreuz K, Kleinig H (1981) On the compartimentation of isopentenyl diphosphate synthesis and utilization in plant cells. Planta 153:578–581

    Article  CAS  Google Scholar 

  • Kreuz K, Kleinig H (1984) Synthesis of prenyl lipids in cells of spinach leaf. Eur J Biochem 141:531–535

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T, Seto H (2003) Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20:171–183

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916

    Article  CAS  Google Scholar 

  • Laureys F, Dewitte W, Witters E, van Montagu M, Inzé D, van Onckelen H (1998) Zeatin is indispensable for G2-M transition in tobacco BY-2 cells. FEBS Lett 426:29–32

    Article  PubMed  CAS  Google Scholar 

  • Laureys F, Smets R, Lenjou M, van Bockstaele D, Inzé D, van Onckelen H (1999) A low content in zeatin type cytokinins is not restrictive for the occurrence of G1/S transition in tobacco BY-2 cells. FEBS Lett 460:123–128

    Article  PubMed  CAS  Google Scholar 

  • Leyes AE, Baker JA, Poulter CD (1999a) Biosynthesis of isoprenoids in Escherichia coli: stereochemistry of the reaction catalysed by farnesyl diphosphate synthase. Org Lett 1:1071–1073

    Article  PubMed  CAS  Google Scholar 

  • Leyes AE, Baker JA, Hahn FM, Poulter CD (1999b) Biosynthesis of isoprenoids in Escherichia coli: stereochemistry of the reaction catalysed by isopentenyl diphosphate: dimethylallyl diphosphate isomerase. J Chem Soc Chem Commun 8:717–718

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose 5-phosphatepathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lindsey S, Harwood HJ (1995) Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation. J Biol Chem 270:9083–9096

    Article  PubMed  CAS  Google Scholar 

  • Lois ML, Campos N, Rosa Putra S, Danielsen K, Rohmer M, Boronat A (1998) Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis D-1-deoxyxylulose-5-phosphate, a common precursor for isoprenoid, thiamin, and pyrydoxol biosynthesis. Proc Natl Acad Sci USA 95:2105–2110

    Article  PubMed  CAS  Google Scholar 

  • Lopez D, Chambers CM, Keller RK, Ness GC (1998) Compensatory responses to inhibition of hepatic squalene synthase. Arch Biochem Biophys 351:159–166

    Article  PubMed  CAS  Google Scholar 

  • Lütke-Brinkhaus F, Liedvogel B, Kleinig H (1984) On the biosynthesis of ubiquinones in plant mitochondria. Eur J Biochem 141:537–541

    Article  PubMed  Google Scholar 

  • Maillot-Vernier P, Schaller H, Benveniste P, Belliard G (1989) Biochemical characterization of a sterol mutant plant regenerated from a tobacco callus resistant to a triazole cytochrome-P-450-obtusifoliol-14-demethylase inhibitor. Biochem Biophys Res Commun 165:125–130

    Article  PubMed  CAS  Google Scholar 

  • Maillot-Vernier P, Gondet L, Schaller H, Benveniste P, Belliard G (1991) Genetic study and further biochemical characterization of a tobacco mutant that overproduces sterols. Mol Gen Genet 231:33–40

    Article  PubMed  CAS  Google Scholar 

  • McCaskill D, Croteau R (1995) Isoprenoid synthesis in peppermint (Mentha × piperita): development of a model system for measuring flux of intermediates through the mevalonic acid pathway in plants. Biochem Soc Trans 23:290S

    PubMed  CAS  Google Scholar 

  • Meigs TE, Simoni RD (1997) Farnesol as a regulator of HMG-CoA reductase degradation: characterization and role of farnesyl pyrophosphatase. Arch Biochem Biophys 345:1–9

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa Y, Kato H, Muranaka T, Yoshida S (2002) Amyloplast formation in cultured tobacco BY-2 cells requires a high cytokinin content. Plant Cell Physiol 43:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa Y, Nakajima N, Abe T, Sakai A, Fujioka S, Kawano S, Kuroiwa T, Yoshida S (2003) Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. J Exp Bot 54:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Momose K, Rudney H (1972) 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria from p-hydroxybenzoate and isopentenylpyrophosphate. A demonstration of isoprenoid synthesis in rat liver mitochondria. J Biol Chem 247:3930–3940

    PubMed  CAS  Google Scholar 

  • Morehead TA, Biermann BJ, Crowell DN, Randall SK (1995) Changes in protein isoprenylation during the growth of suspension-cultured tobacco cells. Plant Physiol 109:277–284

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nah J, Song SJ, Back K (2001) Partial characterization of farnesyl and geranylgeranyl diphosphatases induced in rice seedlings by UV-C irradiation. Plant Cell Physiol 42:864–867

    Article  PubMed  CAS  Google Scholar 

  • Ness GC, Eales S, Lopez D, Zhao Z (1994) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression by sterols and nonsterols in rat liver. Arch Biochem Biophys 308:420–425

    Article  PubMed  Google Scholar 

  • Osowska-Rogers S, Swiezewska E, Andersson B, Dallner G (1994) The endoplasmic reticulum-Golgi system is a major site of plastoquinone synthesis in spinach leaves. Biochem Biophys Res Commun 205:714–721

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287–290

    Article  PubMed  CAS  Google Scholar 

  • Piel J, Donath J, Bandemer K, Boland W (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew Chem Int Ed 37:2478–2481

    Article  CAS  Google Scholar 

  • Randall SK, Marshall MS, Crowell DN (1993) Protein isoprenylation in suspension-cultured tobacco cells. Plant Cell 5:433–442

    Article  PubMed  CAS  Google Scholar 

  • Redig P, Shaul O, Inzé D, vanMontagu M, van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco cells. FEBS Lett 391:175–180

    Article  PubMed  CAS  Google Scholar 

  • Reents R, Wagner M, Kuhlmann J, Waldmann H (2004) Synthesis and application of fluorescencelabelled ras-proteins for live-cell imaging. Angew Chem Int Ed 43:2711–2714

    Article  CAS  Google Scholar 

  • Rieder C, Jaun B, Arigoni D (2000) On the early steps of cineol biosynthesis in Eucalyptus globulus. Helv Chim Acta 83:2504–2513

    Article  CAS  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Concepción M, Campos N, Lois L-M, Maldonato C, Hoeffler J-F, Grosdemange-Billiard C, Rohmer M, Boronat A (2000) Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Lett 473:328–332

    Article  PubMed  Google Scholar 

  • Rohmer M (1999a) A mevalonate-independent route to isopentenyl diphosphate. In: Cane DE (ed) Comprehensive natural product chemistry, isoprenoids including steroids and carotenoids, vol 2. Pergamon Press, New York, pp 45–68

    Google Scholar 

  • Rohmer M (1999b) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Rudney H (1977) the biosynthesis of coenzyme Q: its relation to cellular metabolism and function. In: Folkers K, Yamamura Y (eds) Biochemical and clinical aspects of coenzyme Q, vol 1. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 29–45

    Google Scholar 

  • Rudney H, Nambudiri AMD, Ranganathan S (1981) The regulation of the synthesis of coenzyme Q in fibroblasts and in heart muscle. In: Folkers K, Yamamura Y (eds) Biochemical and clinical aspects of coenzyme Q, vol 3. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 279–290

    Google Scholar 

  • Running MP, Fletcher JC, Meyerowitz EM (1998) The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development 125:2545–2553

    PubMed  CAS  Google Scholar 

  • Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S (2004) Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci USA 101:7815–7820

    Article  PubMed  CAS  Google Scholar 

  • Runquist M, Ericsson J, Thelin A, Chojnacki T, Dallner G (1994) Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. J Biol Chem 269:5804–5809

    PubMed  CAS  Google Scholar 

  • Ryder NS (1991) Squalene epoxidase as a target for the allylamines. Biochem Soc Trans 19:774–777

    PubMed  CAS  Google Scholar 

  • Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102:9972–9977

    Article  PubMed  CAS  Google Scholar 

  • Schaller H, Graussem B, Benveniste P, Chye M-L, Tan CT, Song YH, Chua NH (1995) Expression of the Hevea brasiliensis (H.B.K.) Müll.Arg. 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109:761–770

    PubMed  CAS  Google Scholar 

  • Schindler S, Lichtenthaler HK (1982) Distribution and levels of ubiquinone homologues in higher plants. In: Wintermans JFGM, Kuiper PJC (eds) Biochemistry and metabolismof plant lipids. Elsevier Biomedical Press, Amsterdam, pp 545–548

    Google Scholar 

  • Schindler S, Lichtenthaler HK (1984) Comparison of the ubiquinone homologue pattern in plant mitochondria and their possible prokaryotic ancestors. In: Siegenthaler P-A, Eichenberger W (eds) Structure, function and metabolism of plant lipids. Elsevier, Amsterdam, pp 273–276

    Google Scholar 

  • Schindler S, Lichtenthaler HK, Dizengremel P, Rustin P, Lance C (1984) Distribution and significance of different ubiquinone homologues in purified mitochondria and in intact plant tissue. In: Siegenthaler P-A, Eichenberger W (eds) Structure, function and metabolism of plant lipids. Elsevier, Amsterdam, pp 267–272

    Google Scholar 

  • Schindler S, Bach TJ, Lichtenthaler HK (1985) Differential inhibition by mevinolin of prenyllipid accumulation in radish seedlings. Z Naturforsch 40c:208–214

    CAS  Google Scholar 

  • Schnee C, Kollner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060

    Article  PubMed  CAS  Google Scholar 

  • Shearer AG, Hampton RY (2005) Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J 24:149–159

    Article  PubMed  CAS  Google Scholar 

  • Shigy Y (1989) Inhibition of bacterial isoprenoid synthesis by fosmidomycin, a phosphonic acid-containing antibiotic. J Antimicrob Chemother 24:131–145

    Google Scholar 

  • Sinensky M (2000) Functional aspects of polyisoprenoid protein substituents: roles in protein-protein interaction and trafficking. Biochim Biophys Acta 1529:203–209

    PubMed  CAS  Google Scholar 

  • Sippel CJ, Goewert RR, Slachman FN, Olson RE (1983) The regulation of ubiquinone-6 biosynthesis by Saccharomyces cerevisiae. J Biol Chem 258:1057–1061

    PubMed  CAS  Google Scholar 

  • Stermer BA, Bianchini GM, Korth KL (1994) Regulation of HMG-CoA reductase activity in plants. J Lipid Res 35:1133–1140

    PubMed  CAS  Google Scholar 

  • Swiezewska E, Dallner G, Andersson B, Ernster L (1993) Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves. J Biol Chem 268:1494–1499

    PubMed  CAS  Google Scholar 

  • Tansey TR, Shechter I (2000) Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta 1529:49–62

    PubMed  CAS  Google Scholar 

  • Taton M, Ullmann P, Benveniste P, Rahier A (1988) Interaction of triazole fungicides and plant growth regulators with microsomal cytochrome P-450-dependent obtusifoliol 14-methyl demethylase. Pestic Biochem Physiol 30:178–189

    Article  CAS  Google Scholar 

  • Teclebrhan H, Olson J, Swiezewska E, Dallner G (1993) Biosynthesis of the side chain of ubiquinone: trans-prenyltransferase in rat liver microsomes. J Biol Chem 268:23081–23086

    PubMed  CAS  Google Scholar 

  • Teclebrhan H, Jakobsson-Borin A, Brunck U, Dallner G (1995) Relationship between the endoplasmic reticulum-Golgi membrane system and ubiquinone biosynthesis. Biochim Biophys Acta 1256:157–165

    PubMed  Google Scholar 

  • Thai L, Rush JS, Maul JE, Devarenne T, Rodgers DL, Chappell J, Waechter CJ (1999) Farnesol is utilized for isoprenoid biosynthesis in plant cells via farnesyl pyrophosphate formed by successive monophosphorylation reactions. Proc Natl Acad Sci USA 96:13080–13085

    Article  PubMed  CAS  Google Scholar 

  • Threlfall DR (1982) Biosynthesis of biologically important meroterpenoid quinones and chromanols. In: Wintermans JFGM, Kuiper PJC (eds) Biochemistry and metabolism of plant lipids. Elsevier Biomedical Press, Amsterdam, pp 527–536

    Google Scholar 

  • Trumpower BL, Houser RM, Olson RE (1974) Studies on ubiquinone. Demonstration of the total biosynthesis of ubiquinone-9 in rat liver mitochondria. J Biol Chem 249:3041–3048

    PubMed  CAS  Google Scholar 

  • Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  PubMed  CAS  Google Scholar 

  • Wahlberg I, Enzell CR (1987) Tobacco isoprenoids. Nat Prod Rep 4:237–276

    Article  PubMed  CAS  Google Scholar 

  • Weissenborn DL, Denbow CJ, Laine M, Lång SS, Yang Z Yu X, Cramer CL (1995) HMG-CoA reductase and terpenoid phytoalexins: molecular specialization within a complex pathway. Physiol Plant 93:393–400

    Article  CAS  Google Scholar 

  • Wentzinger L (2002) Régulation de la voie de biosynthèse des isoprénoïdes cytoplasmiques chez le tabac. Thèse doctorale, Université Louis Pasteur, Strasbourg, pp 1–138

    Google Scholar 

  • Wentzinger L, Bach TJ, Hartmann M-A (2002) In vivo inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol 130:334–346

    Article  PubMed  CAS  Google Scholar 

  • Wolff M, Seemann M, Tse Sum Buib B, Frapart Y, Tritsch D, Garcia Estrabot A, Rodríguez-Concepción M, Boronat A, Marquet A, Rohmer M (2003) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe-4S] protein. FEBS Lett 541:115–120

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky S, Kulukian A, Rodríguez-Concepción M, Young CA, Gruissem W (2000) Functional requirement of plant farnesyltransferase during development in Arabidopsis. Plant Cell 12:1267–1278

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Tschantz WR, Casey PJ (1997) Isolation and characterization of a prenylcysteine lyase from bovine brain. J Biol Chem 272:23354–23359

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Bressan RA, Hasegawa PM (1993) Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature. Proc Natl Acad Sci USA 90:8557–8561

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer EC, Medrano LJ, Meyerowitz EM (2000) Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci USA 97:7633–7638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hemmerlin, A. et al. (2006). The Use of Tobacco BY-2 Cells to Elucidate the Biosynthesis and Essential Functions of Isoprenoids. In: Nagata, T., Matsuoka, K., Inzé, D. (eds) Tobacco BY-2 Cells: From Cellular Dynamics to Omics. Biotechnology in Agriculture and Forestry, vol 58. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32674-X_17

Download citation

Publish with us

Policies and ethics