Skip to main content

Dual Polarisation Interferometry: An Optical Technique to Measure the Orientation and Structure of Proteins at the Solid-Liquid Interface in Real Time

  • Chapter

Part of the Principles and Practice book series (PRINCIPLES)

Abstract

The study of the orientation, structure, and function of proteins at interfaces in real time is demanding and complex in nature. For the last 40 years the primary means for the study of protein structure has been x-ray crystallography. This is, of course, a solid-state technique and not real time in nature. Over the last 20 years several techniques to address, at least in part, this important area have been adopted. These range from biosensors, which measure the rates of change of processes at interfaces, to analytical techniques such as neutron reflection, which are capable of providing detailed information on (protein) layer structures at interfaces. In this article a new analytical technique is described, dual polarisation interferometry (DPI), which combines the analytical nature of neutron reflection techniques with the real-time, bench-top accessibility associated with biosensors. Several examples of the measurement of protein orientation, structure and function are presented to demonstrate the value of the technique. A description of the fundamental physical principles of the measurement and verification of the technique are also provided.

Keywords

  • Refractive Index
  • Surface Plasmon Resonance
  • Optical Path Length
  • Sensor Surface
  • Waveguide Structure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-32658-8_4
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-32658-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achyuthan KE, GreenBurg CS (1987) Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. role of GTP and calcium ions in modulating activity. J Biol Chem 262:1901–1906

    CAS  Google Scholar 

  • Arwin H (2000) Ellipsometry on thin organic layers of biological interest: characterization and applications. Thin Solid Films 377–378:48–56

    CrossRef  Google Scholar 

  • Baird C L, Myszka DG (2001) Current and emerging commercial optical biosensors. J Mol Recognit 14:261–268

    CAS  CrossRef  Google Scholar 

  • Bergamini CM, Signorini M, Caselli L, Melandri P (1993) Regulation of transglutaminase activity by GTP in digitonin-permeabilized Yoshida tumour cells. Biochem Mol Biol Int 30:727–732

    CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  CrossRef  Google Scholar 

  • Bucknall DG, Butler SA, Higgins JS (1999) ISIS Facility Annual Report 1998-99 RAL-TR-1998-050

    Google Scholar 

  • Burstein E, Chen WP, Chen YJ, Hartstein A (1974) Surface polarisations — propagating electromagnetic modes at interfaces. J Vac Sci Technol 11:1004–1019

    CAS  CrossRef  Google Scholar 

  • Cassadio R, Polverini E, Mariani P, Spinozzi F, Carsughi F, Fontana A, Polverino de Laureto P, Matteucci G, Bergamini CM (1999) The structural basis for the regulation of tissue transglutaminase by calcium ions. Eur J Biochem 262:672–679

    CrossRef  Google Scholar 

  • Cross GH, Reeves AA, Brand S, Popplewell JF, Peel LL, Swann MJ, Freeman NJ (2003) A new quantitative optical biosensor for protein characterisation. Biosensors Bioelectron 19:383–390

    CAS  CrossRef  Google Scholar 

  • Cross GH, Reeves A, Brand S, Swann MJ, Peel LL, Freeman NJ, Lu JR (2004) The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferometer. J Phys D Appl Phys 37:74–80

    CAS  CrossRef  Google Scholar 

  • Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: principle of operation and associated instrumentation. Biosensors Bioelectron 8:347–354

    CAS  CrossRef  Google Scholar 

  • Davis TM, Wilson WD (2000) Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data. Anal Biochem 284:348–353

    CAS  CrossRef  Google Scholar 

  • Davis TM, Wilson WD (2001) Surface plasmon resonance biosensor analysis of RNA-small molecule interactions. Methods Enzymol 340:22–51

    CAS  CrossRef  Google Scholar 

  • Di Venere A, Rossi A, De Matteis F, Rosato N, Finazzi A, Mei G (2000) Opposite effects of Ca2+ and GTP binding on tissue transglutaminase tertiary structure. J Biol Chem 275:3915–3921

    CrossRef  Google Scholar 

  • Fesus L, Piacentini M, Davies PJA (1991) Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol 56:170–177

    CAS  Google Scholar 

  • Flanagan MT, Pantell RH (1984) Surface plasmon. Resonance and immunosensors. Electron Lett 20:968–970

    Google Scholar 

  • Folk JE, Finnlayson JS (1977) The ɛ-(γ-glutamyl) lysine crosslink and the catalytic activity of transglutaminases. Adv Protein Chem 31:1–133

    CAS  Google Scholar 

  • Fox BA, Yee VC, Pedersen LC, Le Trongi I, Bishop PD (1999) Identification of the calcium binding site and a novel ytterbium site in blood coagulation factor XIII by x-ray crystallography. J Biol Chem 274:4917–4923

    CAS  CrossRef  Google Scholar 

  • Fragneto-Cusani G (2001) Neutron reflectivity at the solid/liquid interface: examples of applications in biophysics J Phys Condens Matter 13:4973–4989

    CAS  CrossRef  Google Scholar 

  • Freeman NJ, Peel LL, Swann MJ, Lu JR (2004a) Lysozyme adsorption studies at the silica/water interface using dual polarization interferometry. Langmuir 20:1827–1832

    CrossRef  CAS  Google Scholar 

  • Freeman NJ, Peel LL, Swann MJ, Cross GH, Reeves A, Brand S, Lu JR (2004b) Real time, high-resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarisation interferometry. J Phys Condens Matter 16:S2493–S2496

    CAS  CrossRef  Google Scholar 

  • Frostell-Karlsson A, Remaeus A, Roos H, Andersson K, Borg P, Hamalainen M, Karlsson R (2001) Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J Med Chem 43:1986–1992

    CrossRef  CAS  Google Scholar 

  • Gestwicki JE, Hsieh HV, Pitner JB (2001) Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance. Anal Chem 73:5732–5737

    CAS  CrossRef  Google Scholar 

  • Greenberg CS, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5:3071–3077

    CAS  Google Scholar 

  • Huglin MB (ed) (1972) Light Scattering from Polymer Solutions. Academic Press, New York

    Google Scholar 

  • Jung LS, Nelson KE, Stayton PS, Campbell CT (2000) Streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir 16:9421–9432

    CAS  CrossRef  Google Scholar 

  • Karlsson R (1994) Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptor. Anal Biochem 221:142–151

    CAS  CrossRef  Google Scholar 

  • Karlsson R, Kullman-Magnusson M, Hamalainen MD, Remaeus A, Andersson K, Borg P, Gyzander E, Deinum J (2000) Biosensor analysis of drug-target interactions: direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors. Anal Biochem 278:1–13

    CAS  CrossRef  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    CAS  CrossRef  Google Scholar 

  • Kretschmann F, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch Teil A 23:2135–2136

    CAS  Google Scholar 

  • Monsonego A, Friedmann I, Shasni Y, Eisenstein M, Schwartz M (1998) GTP dependent conformational changes associated with the functional switch between G document and crosslinking activities in brain-derived tissue transglutaminase. J Mol Biol 282:713–720

    CAS  CrossRef  Google Scholar 

  • Mottahedeh J, Marsh R (1998) Characterization of 101-kDa transglutaminase from physarum polycephalum and identification of LAV1-2 as substrate. J Biol Chem 273:29888–29895

    CAS  CrossRef  Google Scholar 

  • Muirhead H, Perutz MF (1963) Structure of haemoglobin. A three-dimensional Fourier synthesis of reduced human haemoglobin at 5.5 Å resolution. Nature 199:633–638

    CAS  CrossRef  Google Scholar 

  • Nakoaka H, Perez DM, Back KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264:1593–1596

    Google Scholar 

  • Nellen Ph M, Tiefenthaler K, Lukosz W (1988) Integrated optical input grating couplers as biochemical sensors. Sens Actuators 15:285–295

    CAS  CrossRef  Google Scholar 

  • Perutz MF (1963) X-ray analysis of hemoglobin. Science 140:863–869

    CAS  Google Scholar 

  • Peters T (1985) Serum albumin. Adv Protein Chem 37:161–245

    CAS  Google Scholar 

  • Radford SE (2000) Protein folding: progress made and promises ahead. Trends Biochem Sci 25:611–618

    CAS  CrossRef  Google Scholar 

  • Ramsay G (ed) (1998) Commercial Biosensors: Applications to Clinical, Bioprocess and Environmental Samples. Wiley Interscience, New York

    Google Scholar 

  • Salamon Z, Cowell S, Varga E, Yamamura HI, Hruby VJ, Tollin G (2000) Plasmon resonance studies of agonist/antagonist binding to the human δ-Opioid receptor: new structural insights into receptor-ligand interactions. Biophys J 79:2463–2474

    CAS  Google Scholar 

  • Shuck P (1997) Surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26:541–566

    CrossRef  Google Scholar 

  • Siefring GE, Apostol AB, Velasco PT, Lorand L (1978) Enzymatic basis for the Ca++-induced cross-linking of membrane proteins in intact human erythrocytes. Biochemistry 17:2598–2604

    CAS  CrossRef  Google Scholar 

  • Spaeth K, Brecht A, Gauglitz (1997) Studies on the biotin-avidin multilayer adsorption by spectroscopic ellipsometry. J Colloid Interface Sci 196:128–135

    CAS  CrossRef  Google Scholar 

  • Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998a) The conformational structure of bovine serum albumin layers adsorbed at the silica-water interface. J Phys Chem B 102:8100–8108

    CAS  CrossRef  Google Scholar 

  • Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998b) The effect of solution pH on the structure of lysozyme layers adsorbed at the silica-water interface studied by neutron reflection. Langmuir 14:438–445

    CAS  CrossRef  Google Scholar 

  • Swann MJ, Peel LL, Carrington S, Freeman NJ (2004) Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal Biochem 329:190–198

    CAS  CrossRef  Google Scholar 

  • Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am 6:209–220

    CAS  CrossRef  Google Scholar 

  • Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity. biotin binding to streptavidin. Science 243:85–88

    CAS  Google Scholar 

  • Wen J, Arakawa T (2000) Refractive index of proteins in aqueous sodium chloride. Anal Biochem 280:327–329

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freeman, N. (2006). Dual Polarisation Interferometry: An Optical Technique to Measure the Orientation and Structure of Proteins at the Solid-Liquid Interface in Real Time. In: Déjardin, P. (eds) Proteins at Solid-Liquid Interfaces. Principles and Practice. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32658-8_4

Download citation