Advertisement

The Relativistic Electron-Positron Field: Hartree-Fock Approximation and Fixed Electron Number

  • H. Siedentop
Chapter
  • 675 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 695)

Abstract

We give an overview over recent investigations concerning the relativistic electron-positron field. Starting from basic definition, we review the derivation of the Lamb shift and the Hartree-Fock approximation.

Keywords

Dirac Operator Vacuum Polarization Charge Renormalization Uehling Potential Basic Hilbert Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Avron, I. Herbst, and B. Simon. Schrödinger operators with magnetic filelds. I. general interactions. Duke Math. J., 45(4):847–833, December 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Volker Bach, Jean-Marie Barbaroux, Bernard Helffer, and Heinz Siedentop. Stability of matter for the Hartree-Fock functional of the relativistic electron-positron field. Doc. Math., 3:353–364 (electronic), 1998.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Volker Bach, Jean-Marie Barbaroux, Bernard Helffer, and Heinz Siedentop. On the stability of the relativistic electron-positron field. Comm. Math. Phys., 201:445–460, 1999.zbMATHMathSciNetADSCrossRefGoogle Scholar
  4. 4.
    G.E. Brown and D.G. Ravenhall. On the interaction of two electrons. Proc. Roy. Soc. London Ser. A., 208:552–559, 1951.zbMATHMathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Raymond Brummelhuis, Norbert Röhrl, and Heinz Siedentop. Stability of the relativistic electron-positron field of atoms in Hartree-Fock approximation: Heavy elements. Doc. Math., J. DMV, 6:1–8, 2001.zbMATHGoogle Scholar
  6. 6.
    P. Chaix and D. Iracane. From quantum electrodynamics to mean-field theory: I. The Bogoliubov-Dirac-Fock formalism. J. Phys. B., 22(23):3791–3814, December 1989.ADSCrossRefGoogle Scholar
  7. 7.
    P. Chaix, D. Iracane, and P.L. Lions. From quantum electrodynamics to mean- field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-fileld approximation. J. Phys. B., 22(23):3815–3828, December 1989.ADSCrossRefGoogle Scholar
  8. 8.
    P.-A.-M. Dirac. Théorie du positron. In Cockcroft, J. Chadwick, F. Joliot, J. Joliot, N. Bohr, G. Gamov, P.A.M. Dirac, and W. Heisenberg, editors, Structure et propriétés des noyaux atomiques. Rapports et discussions du septieme conseil de physique tenu à Bruxelles du 22 au 29 octobre 1933 sous les auspices de l'institut international de physique Solvay. Publies par la commission administrative de l'institut., pp. 203–212. Paris: Gauthier-Villars. XXV, 353 S., 1934.Google Scholar
  9. 9.
    P.A.M. Dirac. Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc., 30:150–163, 1934.zbMATHCrossRefGoogle Scholar
  10. 10.
    William Desmond Evans, Peter Perry, and Heinz Siedentop. The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. Comm. Math. Phys., 178(3):733–746, July 1996.ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Christian Hainzl, Mathieu Lewin, and Éric Séré. Self-consistent solution for the polarized vacuum in a no-photon qed model. lanl.arXiv.org, http://xxx. lanl.gov/pdf/physics/0404047, 2004.
  12. 12.
    Christian Hainzl, Mathieu Lewin, and Éric Séré. Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation. Commun. Math. Phys., 257(3), 2005.Google Scholar
  13. 13.
    Christian Hainzl and Heinz Siedentop. Non-perturbative mass and charge renormalization in relativistic no-photon quantum electrodynamics. Comm. Math. Phys., 243(2):241–260, 2003.zbMATHMathSciNetADSCrossRefGoogle Scholar
  14. 14.
    W. Heisenberg. Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys., 90:209–231, 1934.zbMATHCrossRefADSGoogle Scholar
  15. 15.
    Dirk Hundertmark, Norbert Röhrl, and Heinz Siedentop. The sharp bound on the stability of the relativistic electron-positron field in Hartree-Fock approximation. Comm. Math. Phys., 211(3):629–642, May 2000.ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Tosio Kato. Perturbation Theory for Linear Operators, volume 132 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1 edition, 1966.Google Scholar
  17. 17.
    Elliott H. Lieb, Heinz Siedentop, and Jan Philip Solovej. Stability and instability of relativistic electrons in classical electromagnetic fields. J. Statist. Phys., 89(1-2):37–59, 1997. Dedicated to Bernard Jancovici.zbMATHMathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Elliott H. Lieb and Walter E. Thirring. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In Elliott H. Lieb, Barry Simon, and Arthur S. Wightman, editors, Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton University Press, Princeton, 1976.Google Scholar
  19. 19.
    Marvin H. Mittleman. Theory of relativistic effects on atoms: Configuration space Hamiltonian. Phys. Rev. A, 24(3):1167–1175, September 1981.ADSCrossRefGoogle Scholar
  20. 20.
    Sergey Morozov. Extension of a minimax principle for Coulomb-Dirac operators. Master's thesis, Mathematisches Institut, Ludwig-Maximilians- Universität, Theresienstr. 39, 80333 München, Germany, August 2004.Google Scholar
  21. 21.
    G. Nenciu. Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Comm. Math. Phys., 48:235–247, 1976.zbMATHMathSciNetADSCrossRefGoogle Scholar
  22. 22.
    W. Pauli and M.E. Rose. Remarks on the Polarization Effects in the Positron Theory. Phys. Rev., II. Ser., 49:462–465, 1936.zbMATHADSGoogle Scholar
  23. 23.
    Norbert Röhrl. Stabilität und Instabilität des relativistischen Elektronen- Positronen-Felds in Hartree-Fock-Näherung. Typoskript-Edition. Hieronymus, München, 1 edition, December 2000.Google Scholar
  24. 24.
    Robert Serber. Linear modifications in the Maxwell field equations. Phys. Rev., II. Ser., 48:49–54, 1935.zbMATHADSGoogle Scholar
  25. 25.
    Barry Simon. Functional Integration and Quantum Physics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979.zbMATHGoogle Scholar
  26. 26.
    J. Sucher. Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A, 22(2):348–362, August 1980.MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    J. Sucher. Foundations of the relativistic theory of many-electron bound states. International Journal of Quantum Chemistry, 25:3–21, 1984.CrossRefGoogle Scholar
  28. 28.
    J. Sucher. Relativistic many-electron Hamiltonians. Phys. Scripta, 36:271–281, 1987.ADSCrossRefGoogle Scholar
  29. 29.
    E.A. Uehling. Polarization effects in the positron theory. Phys. Rev., II. Ser., 48:55–63, 1935.zbMATHADSGoogle Scholar
  30. 30.
    V. Weisskopf. Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. Math.-Fys. Medd., Danske Vid. Selsk., 16(6):1–39, 1936.zbMATHGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • H. Siedentop
    • 1
  1. 1.Mathematisches InstitutLudwig-Maximilians-Universität M unchenMünchenGermany

Personalised recommendations