Local States of Free Bose Fields

  • S. De Bièvre
Part of the Lecture Notes in Physics book series (LNP, volume 695)


These notes contain an extended version of lectures given at the “Summer School on Large Coulomb Systems” in Nordfjordeid, Norway, in august 2003. They furnish a short introduction to some of the most basic aspects of the theory of quantum systems that have a dynamics generated by an equation of the form


Coherent State Real Hilbert Space Couple Oscillator Complex Hilbert Space Local Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bacry, Localizability and space in quantum physics, Lecture Notes in Physics 308, SpringerVerlag (1988).Google Scholar
  2. 2.
    O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics, Vol. 1, Springer-Verlag (1987).Google Scholar
  3. 3.
    O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics, Vol. 2, Springer-Verlag (1996).Google Scholar
  4. 4.
    J. Dereziński, Introduction to representations of canonical commutation and anti-commutation relations. Lect. Notes Phys. 695, 65–145 (2006).CrossRefGoogle Scholar
  5. 5.
    S. De Bièvre, Quantum chaos: a brief first visit, Contempary Mathematics, 289, 161–218 (2001).zbMATHGoogle Scholar
  6. 6.
    S. De Bièvre, Classical and quantum harmonic systems, in preparation.Google Scholar
  7. 7.
    G. Fleming, Hyperplane dependent quantized fields and Lorentz invariance, in Philosophical foundations of quantum field theory, Ed. H. R. Brown and R. Harré, Clarendon Press Oxford, 93–115 (1988).Google Scholar
  8. 8.
    G. Fleming, J. Butterfield, Strange positions, in “From physics to philosophy”, Ed. J. Butterfield, C. Pagonis, Cambridge University Press, 108–165 (1999).Google Scholar
  9. 9.
    Folland, Harmonic analysis on phase space, Princeton University Press, Princeton (1988).Google Scholar
  10. 10.
    S. Fulling, Aspects of quantum field theory on curved space-time, Cambridge UP (1989).Google Scholar
  11. 11.
    M. Fannes, A. Verbeure, On the time-evolution automorphisms of the CCR-algebra for quantum mechanics, Commun. Math. Phys. 35, 257–264 (1974).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    R. Haag, Local quantum physics, Springer (1996).Google Scholar
  13. 13.
    G. C. Hegerfeldt, Remark on causality and particle localization, Phys. Rev. D 10, 10, 3320–3321 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    G. C. Hegerfeldt, Violation of causality in relativistic quantum theory?, Phys. Rev. Letters 54, 22, 2395–2398 (1985).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    G. C. Hegerfeldt, Causality, particle localization and positivity of the energy, in “Irreversibility and Causality (Goslar 1996)”, Lecture Notes in Physics 504, Springer Verlag, 238–245 (1998).Google Scholar
  16. 16.
    J.M. Knight, Strict localization in quantum field theory, Journal of Mathematical Physics 2, 4, 459–471 (1961).zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    J. Klauder and B.-S. Skagerstam, Coherent states: applications in physics and mathematical physics, World Scientific, Singapore (1985).zbMATHGoogle Scholar
  18. 18.
    A. L. Licht, Strict localization, Journal of Mathematical Physics 4, 11, 1443–1447 (1963).zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    A. L. Licht, Local states, Journal of Mathematical Physics, 7, 9, 1656–1669 (1966).zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    P. W. Milonni, The quantum vacuum: an introduction to quantum electrodynamics, Academic Press (1992).Google Scholar
  21. 21.
    T. D. Newton and E. P. Wigner, Localized states for elementary systems, Rev. Mod. Phys. 21, 3, 400–406 (1949).zbMATHADSCrossRefGoogle Scholar
  22. 22.
    A. Perelomov, Generalized coherent states and their applications, Springer Berlin-New York NY-Paris, Texts and monographs in physics (1986).Google Scholar
  23. 23.
    M. Reed and B. Simon, A course in mathematical physics, Volume II, Academic Press, London (1972).Google Scholar
  24. 24.
    D. Robert, Autour de l'approximation semi-classique, Birkhaüser (1987).Google Scholar
  25. 25.
    S.S. Schweber, A.S. Wightman, Configuration space methods in relativistic quantum field theory I, Physical Review 98, 3, 812–831.Google Scholar
  26. 26.
    I. E. Segal, R. W. Goodman, Anti-locality of certain Lorentz-invariant operators, Journal of Mathematics and Mechanics, 14, 4, 629–638 (1965).zbMATHMathSciNetGoogle Scholar
  27. 27.
    R. F. Streater, Why should anyone want to axiomatize quantum field theory, in Philosophical foundations of quantum field theory?, Ed. H. R. Brown and R. Harré, Clarendon Press Oxford, 137–148 (1988).Google Scholar
  28. 28.
    P. Teller, An interpretive introduction to quantum field theory, Princeton University Press (1995).Google Scholar
  29. 29.
    R.M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago Lecture Notes in Physics (1994).Google Scholar
  30. 30.
    A.S. Wightman, On the localizability of quantum mechanical systems, Rev. Mod. Phys. 34, 1, 845–872 (1962).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S. De Bièvre
    • 1
  1. 1.UFR de Mathématiques et UMR P. PainlevéUniversité des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations