On the Computational Performance of a Semidefinite Programming Approach to Single Row Layout Problems

Conference paper
Part of the Operations Research Proceedings book series (ORP, volume 2005)


Mixed Integer Linear Programming Layout Problem Mixed Integer Linear Programming Model Facility Layout Problem Spectral Bundle Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.R.S. Amaral. On the exact solution of a facility layout problem. Eur. J. Oper. Res., to appear.Google Scholar
  2. 2.
    M.F. Anjos, A. Kennings, and A. Vannelli. A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discr. Opt., 2(2):113–122, 2005.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Borchers. CSDP, a C library for semidefinite programming. Optim. Methods Softw., 11/12(1–4):613–623, 1999.MathSciNetGoogle Scholar
  4. 4.
    E. de Klerk. Aspects of Semidefinite Programming, volume 65 of Applied Optimization. Kluwer Academic Publishers, Dordrecht, 2002.zbMATHGoogle Scholar
  5. 5.
    M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear ordering problem. Oper. Res., 32(6):1195–1220, 1984.zbMATHMathSciNetGoogle Scholar
  6. 6.
    M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope. Math. Program., 33(1):43–60, 1985.zbMATHCrossRefGoogle Scholar
  7. 7.
    C. Helmberg. Scholar
  8. 8.
    C. Helmberg and K.C. Kiwiel. A spectral bundle method with bounds. Math. Program., 93(2, Ser. A):173–194, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM J. Optim., 10(3):673–696 (electronic), 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    S.S. Heragu and A. Kusiak. Machine layout problem in flexible manufacturing systems. Oper. Res., 36(2):258–268, 1988.Google Scholar
  11. 11.
    W. Liu and A. Vannelli. Generating lower bounds for the linear arrangement problem. Discrete Appl. Math., 59(2):137–151, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    J.-C. Picard and M. Queyranne. On the one-dimensional space allocation problem. Oper. Res., 29(2):371–391, 1981.zbMATHMathSciNetGoogle Scholar
  13. 13.
    G. Reinelt. The linear ordering problem: algorithms and applications, volume 8 of Research and Exposition in Mathematics. Heldermann Verlag, Berlin, 1985.Google Scholar
  14. 14.
    D.M. Simmons. One-dimensional space allocation: An ordering algorithm. Oper. Res., 17:812–826, 1969.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Solimanpur, P. Vrat, and R. Shankar. An ant algorithm for the single row layout problem in flexible manufacturing systems. Comput. Oper. Res., 32(3):583–598, 2005.zbMATHCrossRefGoogle Scholar
  16. 16.
    H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite Programming. Kluwer Academic Publishers, Boston, MA, 2000.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Management SciencesUniversity of WaterlooWaterlooCanada
  2. 2.Department of Electrical & Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations