On the Computational Performance of a Semidefinite Programming Approach to Single Row Layout Problems

  • Miguel F. Anjos
  • Anthony Vannelli
Part of the Operations Research Proceedings book series (ORP, volume 2005)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.R.S. Amaral. On the exact solution of a facility layout problem. Eur. J. Oper. Res., to appear.Google Scholar
  2. 2.
    M.F. Anjos, A. Kennings, and A. Vannelli. A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discr. Opt., 2(2):113–122, 2005.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Borchers. CSDP, a C library for semidefinite programming. Optim. Methods Softw., 11/12(1–4):613–623, 1999.MathSciNetGoogle Scholar
  4. 4.
    E. de Klerk. Aspects of Semidefinite Programming, volume 65 of Applied Optimization. Kluwer Academic Publishers, Dordrecht, 2002.MATHGoogle Scholar
  5. 5.
    M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear ordering problem. Oper. Res., 32(6):1195–1220, 1984.MATHMathSciNetGoogle Scholar
  6. 6.
    M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope. Math. Program., 33(1):43–60, 1985.MATHCrossRefGoogle Scholar
  7. 7.
    C. Helmberg. http://www-user.tu-chemnitz.de/~helmberg/semidef.html.Google Scholar
  8. 8.
    C. Helmberg and K.C. Kiwiel. A spectral bundle method with bounds. Math. Program., 93(2, Ser. A):173–194, 2002.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM J. Optim., 10(3):673–696 (electronic), 2000.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    S.S. Heragu and A. Kusiak. Machine layout problem in flexible manufacturing systems. Oper. Res., 36(2):258–268, 1988.Google Scholar
  11. 11.
    W. Liu and A. Vannelli. Generating lower bounds for the linear arrangement problem. Discrete Appl. Math., 59(2):137–151, 1995.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    J.-C. Picard and M. Queyranne. On the one-dimensional space allocation problem. Oper. Res., 29(2):371–391, 1981.MATHMathSciNetGoogle Scholar
  13. 13.
    G. Reinelt. The linear ordering problem: algorithms and applications, volume 8 of Research and Exposition in Mathematics. Heldermann Verlag, Berlin, 1985.Google Scholar
  14. 14.
    D.M. Simmons. One-dimensional space allocation: An ordering algorithm. Oper. Res., 17:812–826, 1969.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Solimanpur, P. Vrat, and R. Shankar. An ant algorithm for the single row layout problem in flexible manufacturing systems. Comput. Oper. Res., 32(3):583–598, 2005.MATHCrossRefGoogle Scholar
  16. 16.
    H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite Programming. Kluwer Academic Publishers, Boston, MA, 2000.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Miguel F. Anjos
    • 1
  • Anthony Vannelli
    • 2
  1. 1.Department of Management SciencesUniversity of WaterlooWaterlooCanada
  2. 2.Department of Electrical & Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations